Adobe Developer

Products

Products
 Adobe Acrobat Services APIs

PDF Services
Create, combine and export PDFs

PDF Accessibility Auto-Tag
Auto-tag PDF content to improve accessibility

PDF Extract
Extract text, tables, images, and document structure

Document Generation
Generate PDF and Word documents from custom Word templates

Electronic Seal API
Electronically seal PDF documents at scale to provide document athenticity and identity

PDF Embed
Embed high-fidelity PDFs in web apps with analytics

Sign API
Integrate e-signatures into your platform or application

Power Automate Connector
Build workflows on Microsoft Power Platform easily

 Use Cases Pricing Resources

Developer Resources

Forum

Licensing

Sales FAQ

Tech Support FAQ

Contact Us

Documentation

Overview

PDF Services API

PDF Accessibility Auto-Tag API

PDF Extract API

Document Generation API

PDF Electronic Seal API

PDF Embed API

 REST APIs
Get credentials

Console

Sign in

Edit ProfileSign out

	Introduction
	PDF Services API	Overview
	Getting Started
	Quickstarts	Node.js
	Java
	.NET

	How Tos	Overview
	Region Configs for APIs
	External Storage for APIs
	Webhook Notification for APIs
	Create PDF
	Export PDF
	Combine PDF Files
	OCR PDF
	Compress PDFs
	Linearize PDF
	Protect PDF
	Remove Protection
	Insert Pages
	Replace Pages
	Delete Pages
	Reorder Pages
	Rotate Pages
	Split PDF
	Extract PDF
	Get PDF Properties
	PDF Accessibility Auto-Tag
	PDF Electronic Seal

	PDF Accessibility Auto-Tag API	Overview
	Getting Started
	Quickstarts	Node.js
	Java
	.NET
	Python

	How Tos	PDF Accessibility Auto-Tag API

	PDF Extract API	Overview
	Getting Started
	Quickstarts	Node.js
	Java
	.NET
	Python

	How Tos	PDF Extract API

	Document Generation API	Overview
	Getting Started
	Quickstarts	Node.js
	Java
	.NET

	How Tos	Template Tags
	Table Tag with Markers
	Fragments
	Apply styling and formatting
	Hyperlink
	Inline Images
	Complex Table Constructs
	Word Add-in

	PDF Electronic Seal API	Overview
	Getting Started
	Quickstarts	Node.js
	Java
	.NET

	How Tos	PDF Electronic Seal API

	PDF Embed API	Overview
	Getting Started
	How Tos	PDF Embed API basics
	UI Customization
	Comments and Markup
	Analytics
	Handle search engine indexing
	Legacy to Modern viewer

	Release Notes

	Licensing and Usage Limits
	Security, Privacy and Compliance
	Version and Release Notes
	Support
	API Status
	Legacy Documentation	Introduction
	PDF Services API	Overview
	How Tos	Overview
	Create PDF
	Export PDF
	Combine PDF Files
	OCR PDF
	Compress PDFs
	Linearize PDF
	Protect PDF
	Remove Protection
	Insert Pages
	Replace Pages
	Delete Pages
	Reorder Pages
	Rotate Pages
	Split PDF
	Extract PDF
	Get PDF Properties

	Version - Support policy
	Release notes
	PDF Services API Licensing
	Usage Limits

	Document Generation API	Overview
	Quickstarts
	Template Tags
	Fragments
	Apply styling and formatting
	Hyperlink
	Dynamic Table Constructs
	Word Add-in
	Release Notes
	PDF Services API Licensing
	Usage Limits

	PDF Extract API	Overview
	Quickstarts
	How Tos	Overview
	PDF Extract API

	Release Notes
	PDF Services API Licensing
	Usage Limits

	PDF Accessibility Auto-Tag API	Overview
	Quickstarts
	How Tos	Overview
	PDF Accessibility Auto-Tag API

	Release Notes
	PDF Services API Licensing
	Usage Limits

	Products
	Adobe Acrobat Services
	Documentation
	Overview
	PDF Embed API
	How Tos
	PDF Embed API basics

Edit in GitHubLog an issue

PDF Embed API basics
The samples and documentation provide an easy way to jump-start
development. The sections below describe how to embed a customized PDF
viewer in a web page.

Embed a PDF viewer

Once you've received your client ID, embedding the PDF viewer
involves:
	Adding a <script> tag to load the PDF Embed API by source url:
https://acrobatservices.adobe.com/view-sdk/viewer.js (line 6).
	Setting up the rendering area: use a div tag with an ID of
adobe-dc-view (line 9).
	Initializing the PDF Embed API by passing client ID, and call
previewFile with PDF file URL and file name as shown from line 13
to line 18.

As shown below, PDF details are passed in an object which consists of
two fields:
	content: The file content either provided as a file path or file
promise which resolves to ArrayBuffer of the file content. See
Passing file content.
	metaData: File metadata information.

This table lists down the various options which can be passed in metaData.

	Variable	Default	Description

	fileName
	None
	The name of the PDF to be rendered. An example of fileName is "Bodea Brochure.pdf". Note that fileName is mandatory.

	id
	None
	Pass the PDF ID when annotation APIs are enabled to uniquely identify the PDF. For more details, see Annotations API overview.

	hasReadOnlyAccess
	false
	Set this flag to true if you want to render the PDF in read-only mode. Commenting is not allowed and existing PDF comments are displayed as read only.

That's it! View the page in a browser to see your fully functional PDF
viewer.

<html>
<head>
 <title>Your title</title>
 <meta charset="utf-8"/>
 <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"/>
 <script src="https://acrobatservices.adobe.com/view-sdk/viewer.js"></script>
</head>
<body>
 <div id="adobe-dc-view"></div>
 <script type="text/javascript">
 document.addEventListener("adobe_dc_view_sdk.ready", function()
 {
 var adobeDCView = new AdobeDC.View({clientId: "<YOUR_CLIENT_ID>", divId: "adobe-dc-view"});
 adobeDCView.previewFile(
 {
 content: {location: {url: "<Path to your PDF/yourfilename.pdf">}},
 metaData: {fileName: "yourfilename.pdf"}
 });
 });
 </script>
</body>
</html>
<!--Get the samples from https://www.adobe.com/go/pdfembedapi_samples-->
CopyCopied to your clipboard

1<html>
2<head>
3 <title>Your title</title>
4 <meta charset="utf-8"/>
5 <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"/>
6 <script src="https://acrobatservices.adobe.com/view-sdk/viewer.js"></script>
7</head>
8<body>
9 <div id="adobe-dc-view"></div>
10 <script type="text/javascript">
11 document.addEventListener("adobe_dc_view_sdk.ready", function()
12 {
13 var adobeDCView = new AdobeDC.View({clientId: "<YOUR_CLIENT_ID>", divId: "adobe-dc-view"});
14 adobeDCView.previewFile(
15 {
16 content: {location: {url: "<Path to your PDF/yourfilename.pdf">}},
17 metaData: {fileName: "yourfilename.pdf"}
18 });
19 });
20 </script>
21</body>
22</html>
23<!--Get the samples from https://www.adobe.com/go/pdfembedapi_samples-->

The timeout for file rendering is 60 seconds. If the file exceeds this limit there will be a Preview Rendering Failed error.

Passing file content

As shown above, you pass PDF data via the content field either as a
file URL or file promise. The metaData field with a mandatory filename
is required for both methods.

adobeDCView.previewFile({
 content: {location (URL) OR promise (File blob)},
 metaData: {fileName (always required) + optional fields }
})
CopyCopied to your clipboard

1adobeDCView.previewFile({
2 content: {location (URL) OR promise (File blob)},
3 metaData: {fileName (always required) + optional fields }
4})

If you pass both a file URL and file promise, the promise is used and
the URL value is ignored.

File URL
Passing PDF data via a URL is self-explanatory, but note that some
scenarios require special handling.
Token-based authentication
When a file URL resides behind token-based authentication and use custom
headers, pass both the URL and the headers as follows:

adobeDCView.previewFile({
 content: {
 location: {
 url: <filepath>,
 headers:[{key: ..., value: ...}, ...]
 },
 },
 metaData: {fileName: <filename> }
})
CopyCopied to your clipboard

1adobeDCView.previewFile({
2 content: {
3 location: {
4 url: <filepath>,
5 headers:[{key: ..., value: ...}, ...]
6 },
7 },
8 metaData: {fileName: <filename> }
9})

Cookie-based authentication
When a file URL uses cookie-based authentication, set
downloadWithCredentials to true when initialising the
AdobeDC.View object:

var adobeDCView = new AdobeDC.View({
 ...
 downloadWithCredentials: true,
});
CopyCopied to your clipboard

1var adobeDCView = new AdobeDC.View({
2 ...
3 downloadWithCredentials: true,
4});

Cross-origin resource sharing
Cross-origin resource sharing
(CORS) issues
may occur when you pass PDF content as a URL and the PDF Embed API needs
to download the file from the provided location in order to render it.
To avoid this situation, you can choose one of two methods:
	Locate your webpage and file location URL on the same domain.
Example: webpage: https://example.com/viewer/test.html; PDF
location: https://example.com/resources/abc.pdf)
	Enable CORS headers on the PDF resource to allow access from your
webpage domain.

File promise
If the file content is available as an ArrayBuffer (for example, local
PDF files), then it can be passed directly as a Promise which should
resolve to the ArrayBuffer of the file content.

adobeDCView.previewFile({
 content: { promise: <FILE_PROMISE> }
 metaData: { fileName: <FILE_NAME> }
});
CopyCopied to your clipboard

1adobeDCView.previewFile({
2 content: { promise: <FILE_PROMISE> }
3 metaData: { fileName: <FILE_NAME> }
4});

One way to create a file promise is to allow users to choose a local
file for upload. In your HTML, you could do the following:

<label for="file-picker"> Choose a PDF file:</label>
<input type="file" id="file-picker" accept="application/pdf">
CopyCopied to your clipboard

1<label for="file-picker"> Choose a PDF file:</label>
2<input type="file" id="file-picker" accept="application/pdf">

Once the file uploads, you could use a helper function to read the file
and pass it to adobeDCView.previewFile:

function listenForFileUpload() {
 var fileToRead = document.getElementById("file-picker");
 fileToRead.addEventListener("change", function(event) {
 var files = fileToRead.files;
 if (files.length > 0) {
 var reader = new FileReader();
 reader.onloadend = function(e) {
 var filePromise = Promise.resolve(e.target.result);
 // Pass the filePromise and name of the file to the previewFile API
 adobeDCView.previewFile({
 content: {promise: filePromise}
 metaData: { fileName: files[0].name }
 })
 };
 reader.readAsArrayBuffer(files[0]);
 }
 }, false);
}
CopyCopied to your clipboard

1function listenForFileUpload() {
2 var fileToRead = document.getElementById("file-picker");
3 fileToRead.addEventListener("change", function(event) {
4 var files = fileToRead.files;
5 if (files.length > 0) {
6 var reader = new FileReader();
7 reader.onloadend = function(e) {
8 var filePromise = Promise.resolve(e.target.result);
9 // Pass the filePromise and name of the file to the previewFile API
10 adobeDCView.previewFile({
11 content: {promise: filePromise}
12 metaData: { fileName: files[0].name }
13 })
14 };
15 reader.readAsArrayBuffer(files[0]);
16 }
17 }, false);
18}

Embed modes

The PDF Embed API's embed modes govern the PDF viewing area's size and
position within a web page. Available options allow you to control the
viewing experience and layout much like you would an image, video, or
any other web content. In order to use any of the available modes, pass
the mode name along with other preview configurations in the
previewFile API. For example, you could set "FULL_WINDOW", "SIZED_CONTAINER",
"IN_LINE" or "LIGHT_BOX" as the embedMode value (line 5):

adobeDCView.previewFile({
 content: { ... },
 metaData: { ... }
 },
 {embedMode: "<FULL_WINDOW, SIZED_CONTAINER, IN_LINE OR LIGHT_BOX>",
 showDownloadPDF: ...,
 showPrintPDF: ...
 }
);
CopyCopied to your clipboard

1adobeDCView.previewFile({
2 content: { ... },
3 metaData: { ... }
4 },
5 {embedMode: "<FULL_WINDOW, SIZED_CONTAINER, IN_LINE OR LIGHT_BOX>",
6 showDownloadPDF: ...,
7 showPrintPDF: ...
8 }
9);

To view the code in action, see the online demo or run the embed mode samples on your machine.

Embed mode overview
	Embed mode	Description	Example
	Full window (default mode)
	Renders the PDF viewer into the full height and width of the parent element. Best suited for storage and productivity applications.
	

	Sized container
	The sized container mode displays PDFs in a boxed container with landscape orientation. Best suited for presentations.
	

	In-Line
	All PDF pages rendered in line within a web page. Best suited for reading applications.
	

	Lightbox
	Displays PDFs in a focused view. Best suited for content websites, content portals, and email.
	

Full window embed mode
This embed mode renders the PDF viewer into the full height and width of the parent element.
It is different from sized container in that full window embed mode enables all of the annotation tools
as well as other options included in Embed API to be available in the Embed UI.
This mode is best suited for storage and productivity
applications. Note that this embed mode applies by default, even when no embed mode value is passed.
(Full Window Demo)
To use this mode:
	Pass embedMode: "FULL_WINDOW".
	Commenting: By default, all commenting tools (add text comment,
sticky notes, highlight, drawing tool, strikethrough and underline),
eraser tool and the undo/redo tools are available with this mode.
Users can add and save annotations to the PDF. If desired, disable
commenting feature by setting the showAnnotationTools variable to
false.
	Print and download: This mode supports options to download and
print the PDF from the top bar. (showDownloadPDF and showPrintPDF).
The top bar also contains the Adobe Acrobat logo and document search option.
	Right-hand panel: The right-hand panel is available by default
to display the comments, page thumbnails, bookmarks and access the file attachments
available in the PDF. It also provides various page navigation as well as
page viewing controls. Page thumbnails and bookmarks are available by default, but can be
disabled (showThumbnails and showBookmarks).
	Page navigation controls: The page navigation controls
are available by default in the
right-hand panel.
	Zoom control: This mode also provides zoom-in and
zoom-out controls in the right-hand panel. (showZoomControl).
	View mode: Set the default page view to either "FIT_PAGE", "FIT_WIDTH",
"TWO_COLUMN" or "TWO_COLUMN_FIT_PAGE" (defaultViewMode).
	Linearization: Enable linearization to optimize PDFs for faster viewing. To enable PDF linearization,
set enableLinearization to true. For more details, see the section PDF linearization.
	Form-filling: Control form editing capability by simply toggling enableFormFilling on and off as needed.
For more details, see the section Forms handling.
	Annotation APIs: Enable annotation APIs to be able to access PDF annotations programmatically.
For more details, see the section Annotations API overview.

For the complete list of supported preview configurations, see the section Menu and tool options.

<div id="adobe-dc-view"></div>
<script src="https://acrobatservices.adobe.com/view-sdk/viewer.js"></script>
<script type="text/javascript">
 document.addEventListener("adobe_dc_view_sdk.ready", function(){
 var adobeDCView = new AdobeDC.View({clientId: "<YOUR_CLIENT_ID>", divId: "adobe-dc-view"});
 adobeDCView.previewFile({
 content:{location: {url: "https://acrobatservices.adobe.com/view-sdk-demo/PDFs/Bodea Brochure.pdf"}},
 metaData:{fileName: "Bodea Brochure.pdf"}
 }, { embedMode: "FULL_WINDOW", defaultViewMode: "FIT_PAGE", showAnnotationTools: true, showDownloadPDF: true });
 });
</script>
CopyCopied to your clipboard

1<div id="adobe-dc-view"></div>
2<script src="https://acrobatservices.adobe.com/view-sdk/viewer.js"></script>
3<script type="text/javascript">
4 document.addEventListener("adobe_dc_view_sdk.ready", function(){
5 var adobeDCView = new AdobeDC.View({clientId: "<YOUR_CLIENT_ID>", divId: "adobe-dc-view"});
6 adobeDCView.previewFile({
7 content:{location: {url: "https://acrobatservices.adobe.com/view-sdk-demo/PDFs/Bodea Brochure.pdf"}},
8 metaData:{fileName: "Bodea Brochure.pdf"}
9 }, { embedMode: "FULL_WINDOW", defaultViewMode: "FIT_PAGE", showAnnotationTools: true, showDownloadPDF: true });
10 });
11</script>

Forms handling
The PDF Embed API supports live form editing by default. End users can
add and edit text in text fields and interact with other form objects,
including radio buttons, check boxes, lists, and drop downs (select
lists). When users fill any form field, the Save button on the top bar
is automatically enabled so that they can save their information to the
PDF. The PDF Embed API renders forms so that they appear similar to
forms viewed in the full Acrobat app:

Form editing capability is supported only in Full Window embed mode.

Control form editing capability by simply toggling enableFormFilling
on and off as needed. While the Embed API enables form editing by
default, you can disable the feature by setting it to false.

<div id="adobe-dc-view"></div>
<script src="https://acrobatservices.adobe.com/view-sdk/viewer.js"></script>
<script type="text/javascript">
 document.addEventListener("adobe_dc_view_sdk.ready", function () {
 var adobeDCView = new AdobeDC.View({clientId: "<YOUR_CLIENT_ID>", divId: "adobe-dc-view"});
 adobeDCView.previewFile({
 content:{location: {url: "https://acrobatservices.adobe.com/view-sdk-demo/PDFs/Bodea Brochure.pdf"}},
 metaData:{fileName: "Bodea Brochure.pdf"}
 }, { embedMode: "FULL_WINDOW", enableFormFilling: false });
 });
</script>
CopyCopied to your clipboard

1<div id="adobe-dc-view"></div>
2<script src="https://acrobatservices.adobe.com/view-sdk/viewer.js"></script>
3<script type="text/javascript">
4 document.addEventListener("adobe_dc_view_sdk.ready", function () {
5 var adobeDCView = new AdobeDC.View({clientId: "<YOUR_CLIENT_ID>", divId: "adobe-dc-view"});
6 adobeDCView.previewFile({
7 content:{location: {url: "https://acrobatservices.adobe.com/view-sdk-demo/PDFs/Bodea Brochure.pdf"}},
8 metaData:{fileName: "Bodea Brochure.pdf"}
9 }, { embedMode: "FULL_WINDOW", enableFormFilling: false });
10 });
11</script>

Disabling form editing un-highlights form fields:

Unsupported form fields
In the current version, following form fields are unsupported:
	XFA forms
	Digital Signature fields.
	Barcode fields.
	File picker text field
	RTF (rich text) text field
	Fields containing JavaScript or any kind of calculation and
validation
	Text field and drop downs with some special and custom formats
	PDF Actions that includes button Submit scenarios (only button
viewing is supported)

When the API detects unsuppported form fields, a dialog appears on the
rendered PDF:

Sized container embed mode
The sized container mode displays PDFs in a boxed container with
landscape orientation. Each page appears as a slide, so this mode works
well for presentations and other workflows that require accurate
placement of the PDF content within other content. (Sized Container Demo)
To use this mode:
	Specify the embedded viewer size by passing height and width values
to the enclosing div tag of the PDF viewer.
	Pass embedMode: "SIZED_CONTAINER"
	Optional: Configure the page and tool options	Page Controls: The page control toolbar at the bottom contains page navigation options. It also contains the Adobe Acrobat logo and document search option.
	Full screen mode: A full screen button also appears in the bottom toolbar which allows users to view the PDF in full screen mode. (showFullScreen).
	Print and download: This mode supports options to download and print the PDF (showDownloadPDF and showPrintPDF).

<div id="adobe-dc-view" style="height: 360px; width: 500px;"></div>
<script src="https://acrobatservices.adobe.com/view-sdk/viewer.js"></script>
<script type="text/javascript">
 document.addEventListener("adobe_dc_view_sdk.ready", function(){
 var adobeDCView = new AdobeDC.View({clientId: "<YOUR_CLIENT_ID>", divId: "adobe-dc-view"});
 adobeDCView.previewFile({
 content:{location: {url: "https://acrobatservices.adobe.com/view-sdk-demo/PDFs/Bodea Brochure.pdf"}},
 metaData:{fileName: "Bodea Brochure.pdf"}
 }, { embedMode: "SIZED_CONTAINER", showFullScreen: true });
 });
</script>
CopyCopied to your clipboard

1<div id="adobe-dc-view" style="height: 360px; width: 500px;"></div>
2<script src="https://acrobatservices.adobe.com/view-sdk/viewer.js"></script>
3<script type="text/javascript">
4 document.addEventListener("adobe_dc_view_sdk.ready", function(){
5 var adobeDCView = new AdobeDC.View({clientId: "<YOUR_CLIENT_ID>", divId: "adobe-dc-view"});
6 adobeDCView.previewFile({
7 content:{location: {url: "https://acrobatservices.adobe.com/view-sdk-demo/PDFs/Bodea Brochure.pdf"}},
8 metaData:{fileName: "Bodea Brochure.pdf"}
9 }, { embedMode: "SIZED_CONTAINER", showFullScreen: true });
10 });
11</script>

Toggling full screen
To display the PDF in full screen view, choose the full screen mode
button in the bottom toolbar. In the full screen mode, the top bar contains a traditional exit
(X) button which returns full screen mode to normal mode. The full screen mode also displays a right-hand panel
which contains various options such as page thumbnails, bookmarks and page navigation options.
In mobile browsers, the user will be prompted to view the PDF in full screen mode for optimal reading. You can exit full screen mode in mobile browsers by swiping down.
Full screen button in sized container embed mode

Exit button in sized container full screen mode

In-Line embed mode
In-Line mode renders PDF pages inline with other web page content. In
this mode, all PDF pages are displayed at once which enables easy and
smooth navigation. In this mode you need only specify the width of the
embedded viewer in the enclosing div tag since the viewer height is
automatically sized for the number of PDF pages. This mode is ideal for
whitepapers, brochures, e-books, and other reading applications. (In-Line Demo)
To use this mode:
	Specify the viewer width attribute in the enclosing div tag of the
PDF viewer.
	Pass embedMode: "IN_LINE"
	Optional: By default, the page control toolbar at the bottom only displays when a
user scrolls pages. This toolbar contains the Adobe Acrobat logo and
provides basic page navigation controls and document search along with
options to download and print the PDF. You can toggle both
showDownloadPDF and showPrintPDF on and off.

<div id="adobe-dc-view" style="width: 800px;"></div>
<script src="https://acrobatservices.adobe.com/view-sdk/viewer.js"></script>
<script type="text/javascript">
 document.addEventListener("adobe_dc_view_sdk.ready", function(){
 var adobeDCView = new AdobeDC.View({clientId: "<YOUR_CLIENT_ID>", divId: "adobe-dc-view"});
 adobeDCView.previewFile({
 content:{location: {url: "https://acrobatservices.adobe.com/view-sdk-demo/PDFs/Bodea Brochure.pdf"}},
 metaData:{fileName: "Bodea Brochure.pdf"}
 }, { embedMode: "IN_LINE", showPrintPDF: true });
 });
</script>
CopyCopied to your clipboard

1<div id="adobe-dc-view" style="width: 800px;"></div>
2<script src="https://acrobatservices.adobe.com/view-sdk/viewer.js"></script>
3<script type="text/javascript">
4 document.addEventListener("adobe_dc_view_sdk.ready", function(){
5 var adobeDCView = new AdobeDC.View({clientId: "<YOUR_CLIENT_ID>", divId: "adobe-dc-view"});
6 adobeDCView.previewFile({
7 content:{location: {url: "https://acrobatservices.adobe.com/view-sdk-demo/PDFs/Bodea Brochure.pdf"}},
8 metaData:{fileName: "Bodea Brochure.pdf"}
9 }, { embedMode: "IN_LINE", showPrintPDF: true });
10 });
11</script>

Lightbox embed mode
Lightbox mode renders the PDF in the foreground at top of the page. The
background remains visible, but the focus is on the previewed PDF. The
top bar provides configurable
Close and Back buttons. The Close button appears by default.
(Lightbox Demo)
To use this mode:
	Pass embedMode: "LIGHT_BOX".

	Optional: Configure the various PDF Viewer options.
	Print and download: This mode supports options to download
and print the PDF from the top bar (showDownloadPDF and showPrintPDF).
The top bar also contains the Adobe Acrobat logo.
	Right-hand panel: The right-hand panel is available by default
to display the page thumbnails, bookmarks and access the file attachments
available in the PDF. It also provides various page navigation as well as
page viewing controls. Page thumbnails and bookmarks are available
by default, but can be disabled (showThumbnails and showBookmarks).
	Page navigation controls: The page navigation controls
are available by default in the
right-hand panel.
	Zoom control: This mode also provides zoom-in and
zoom-out controls in the right-hand panel. (showZoomControl).
	View mode: Set the default page view to either "FIT_PAGE", "FIT_WIDTH",
"TWO_COLUMN" or "TWO_COLUMN_FIT_PAGE" (defaultViewMode).
	Exit PDF Viewer: The top bar contains the Close button by
default to close the PDF preview (exitPDFViewerType: "CLOSE")
which can be configured to Back button by setting exitPDFViewerType to RETURN
(exitPDFViewerType: "RETURN").

<script src="https://acrobatservices.adobe.com/view-sdk/viewer.js"></script>
<script type="text/javascript">
 document.addEventListener("adobe_dc_view_sdk.ready", function(){
 var adobeDCView = new AdobeDC.View({clientId: "<YOUR_CLIENT_ID>"});
 adobeDCView.previewFile({
 content:{location: {url: "https://acrobatservices.adobe.com/view-sdk-demo/PDFs/Bodea Brochure.pdf"}},
 metaData:{fileName: "Bodea Brochure.pdf"}
 }, {embedMode: "LIGHT_BOX", exitPDFViewerType: "CLOSE"});
 });
</script>
CopyCopied to your clipboard

1<script src="https://acrobatservices.adobe.com/view-sdk/viewer.js"></script>
2<script type="text/javascript">
3 document.addEventListener("adobe_dc_view_sdk.ready", function(){
4 var adobeDCView = new AdobeDC.View({clientId: "<YOUR_CLIENT_ID>"});
5 adobeDCView.previewFile({
6 content:{location: {url: "https://acrobatservices.adobe.com/view-sdk-demo/PDFs/Bodea Brochure.pdf"}},
7 metaData:{fileName: "Bodea Brochure.pdf"}
8 }, {embedMode: "LIGHT_BOX", exitPDFViewerType: "CLOSE"});
9 });
10</script>

Top bar with Close button (exitPDFViewerType: "CLOSE")

Top bar with Back button (exitPDFViewerType: "RETURN")

Focus on PDF rendering
Using PDF Embed API, website developers have the flexibility to control if the PDF should take focus when it is rendered within a website.
This is achieved through the variable focusOnRendering which can be passed as a configuration to the previewFile API. This variable accepts a Boolean value.

adobeDCView.previewFile({
 content:{location: {url: "<URL_OF_PDF>"}},
 metaData:{fileName: "<FILE_NAME>"}
}, {embedMode: "<EMBED_MODE>", focusOnRendering: true});
CopyCopied to your clipboard

1adobeDCView.previewFile({
2 content:{location: {url: "<URL_OF_PDF>"}},
3 metaData:{fileName: "<FILE_NAME>"}
4}, {embedMode: "<EMBED_MODE>", focusOnRendering: true});

The default value of this configuration variable varies according to the embed mode.
	Embed mode	Default value of focusOnRendering	Default behaviour
	Full window
	true
	Acquires focus when PDF is rendered.

	Sized container
	false
	Doesn’t acquire focus when PDF is rendered.

	In-Line
	false
	Doesn’t acquire focus when PDF is rendered.

	Lightbox
	true (Cannot be set to false)
	Always acquires focus when PDF is rendered. This cannot be changed.

The PDF will always acquire focus in Lightbox embed mode since this embed mode is intended to provide a focused view of the PDF by opening the PDF viewer on top of the webpage. This default behaviour in Lightbox embed mode cannot be changed.

The default behaviour of taking focus can be modified for all embed modes (except lightbox).
	Set the variable to true (focusOnRendering: true) if the PDF should take focus after rendering.
	Set the variable to false (focusOnRendering: false) if the PDF should not take focus after rendering.

PDF Linearization

Linearization is an approach to optimize PDFs for faster viewing by
displaying the first page as quickly as possible before the entire PDF
gets downloaded. Linearized PDFs contain information so that pages can
be streamed one at a time via byte range requests from a server.
Linearization is extremely useful for displaying large-sized documents
as well as displaying documents on slow networks, thus providing an
overall faster PDF viewing experience.
PDF Embed API supports the rendering of linearized PDFs which are hosted
on servers with byte-range support.
For details, see Enabling byte-streaming on a server.

Display linearized PDFs
In order to display linearized PDFs using PDF Embed API, set the
variable enableLinearization to true (default value is false) and pass
it as a preview configuration to the previewFile API.
As described in the section Passing file content, the linearized PDF can be passed as
a file URL or file Promise.

File URL
Pass the URL of the linearized PDF in the content field and invoke the
previewFile API.

<div id="adobe-dc-view"></div>
<script src="https://acrobatservices.adobe.com/view-sdk/viewer.js"></script>
<script type="text/javascript">
 document.addEventListener("adobe_dc_view_sdk.ready", function() {
 var adobeDCView = new AdobeDC.View({clientId: "<YOUR_CLIENT_ID>", divId: "adobe-dc-view"});
 var previewFilePromise = adobeDCView.previewFile({
 content: {location: {url: "<URL_OF_LINEARIZED_PDF>"}},
 metaData: {fileName: "<FILE_NAME>"}
 },
 {
 enableLinearization: true,
 });
 });
</script>
CopyCopied to your clipboard

1<div id="adobe-dc-view"></div>
2<script src="https://acrobatservices.adobe.com/view-sdk/viewer.js"></script>
3<script type="text/javascript">
4 document.addEventListener("adobe_dc_view_sdk.ready", function() {
5 var adobeDCView = new AdobeDC.View({clientId: "<YOUR_CLIENT_ID>", divId: "adobe-dc-view"});
6 var previewFilePromise = adobeDCView.previewFile({
7 content: {location: {url: "<URL_OF_LINEARIZED_PDF>"}},
8 metaData: {fileName: "<FILE_NAME>"}
9 },
10 {
11 enableLinearization: true,
12 });
13 });
14</script>

File Promise
If the file content is available as an ArrayBuffer, then it can be
passed directly as a Promise resolving to the ArrayBuffer of the file
content.
Pass this file promise in the content field. Along with this, it is
mandatory to pass an object called the linearizationInfo in the
content field.
The linearizationInfo object will contain the following three
functions:
getInfo()
Returns a Promise which,
	Resolves with an object containing the file size. For instance, the
size of a PDF file can be obtained by making a HEAD call to the PDF
URL which will return the content length.
	Reject the Promise if the content length is invalid and the PDF
rendering automatically falls back to the non-linearized flow.

getInitialBuffer()
Returns a Promise which,
	Resolves with an object containing the initial array buffer of the
file. The initial buffer is defined as 0 - 1024 bytes which is
required to render the first page of the linearized PDF.
	Reject the Promise if this call fails due to an unexpected error and
the PDF rendering automatically falls back to the non-linearized
flow.

getFileBufferRanges()
Returns a Promise which,
	Resolves with an object containing the list of desired array buffers
of the file using the ranges parameter provided by PDF Embed API
at run time. The ranges parameter is an array of start and end
file ranges.

If the ranges array contains more than one object, then there are two
ways to fetch the file buffers:
	Make separate calls for each range object present in ranges array
and return the combined result.
	Make a single call with Range header value set to comma
separated start-end values for each range object (for example:
"bytes=0-1024, 1024-2048").

	Reject the Promise when any range call fails or the range call
returns the entire PDF buffer. In this case, PDF rendering will fall
back to the non-linearized flow.

	If you pass both a file URL and file promise for a linearized PDF, the promise is used and the URL value is ignored.
	If you use file promise, then it is mandatory to pass the linearizationInfo object. The linearizationInfo object should contain all the 3 functions: getInfo(), getInitialBuffer() and getFileBufferRanges().

Note that the website developer can provide their custom implementation
of these functions and pass it to the linearizationInfo object.

<div id="adobe-dc-view"></div>
<script src="https://acrobatservices.adobe.com/view-sdk/viewer.js"></script>
<script type="text/javascript">
 document.addEventListener("adobe_dc_view_sdk.ready", function() {
 const linearizationInfoObject = {
 getInfo: () => getInfo(),
 getInitialBuffer: () => getInitialBuffer(),
 getFileBufferRanges: ranges => getFileBufferRanges(ranges)
 };

 var adobeDCView = new AdobeDC.View({clientId: "<YOUR_CLIENT_ID>", divId: "adobe-dc-view"});
 var previewFilePromise = adobeDCView.previewFile({
 content: {
 promise: <FILE_PROMISE>,
 linearizationInfo: linearizationInfoObject
 },
 metaData: {fileName: "<FILE_NAME>"}
 },
 {
 enableLinearization: true,
 });

 function getInfo() {
 /* Write down your own implementation here */
 return new Promise((resolve, reject) => {
 resolve({
 fileSize: <FILE_SIZE>
 });
 });
 }

 function getInitialBuffer() {
 /* Write down your own implementation here */
 return new Promise((resolve, reject) => {
 resolve({
 buffer: <ARRAY_BUFFER>
 });
 });
 }

 function getFileBufferRanges(ranges) {
 /* Write down your own implementation here */
 /* Ranges parameter
 ranges: [{ start: NUMBER, end: NUMBER}, { start: NUMBER, end: NUMBER}, . . .]
 */
 return new Promise((resolve, reject) => {
 resolve({
 bufferList: [
 <ARRAY_BUFFER>,
 <ARRAY_BUFFER>,
 . . .
]
 });
 });
 }
 });
</script>
CopyCopied to your clipboard

1<div id="adobe-dc-view"></div>
2<script src="https://acrobatservices.adobe.com/view-sdk/viewer.js"></script>
3<script type="text/javascript">
4 document.addEventListener("adobe_dc_view_sdk.ready", function() {
5 const linearizationInfoObject = {
6 getInfo: () => getInfo(),
7 getInitialBuffer: () => getInitialBuffer(),
8 getFileBufferRanges: ranges => getFileBufferRanges(ranges)
9 };
10

11 var adobeDCView = new AdobeDC.View({clientId: "<YOUR_CLIENT_ID>", divId: "adobe-dc-view"});
12 var previewFilePromise = adobeDCView.previewFile({
13 content: {
14 promise: <FILE_PROMISE>,
15 linearizationInfo: linearizationInfoObject
16 },
17 metaData: {fileName: "<FILE_NAME>"}
18 },
19 {
20 enableLinearization: true,
21 });
22

23 function getInfo() {
24 /* Write down your own implementation here */
25 return new Promise((resolve, reject) => {
26 resolve({
27 fileSize: <FILE_SIZE>
28 });
29 });
30 }
31

32 function getInitialBuffer() {
33 /* Write down your own implementation here */
34 return new Promise((resolve, reject) => {
35 resolve({
36 buffer: <ARRAY_BUFFER>
37 });
38 });
39 }
40

41 function getFileBufferRanges(ranges) {
42 /* Write down your own implementation here */
43 /* Ranges parameter
44 ranges: [{ start: NUMBER, end: NUMBER}, { start: NUMBER, end: NUMBER}, . . .]
45 */
46 return new Promise((resolve, reject) => {
47 resolve({
48 bufferList: [
49 <ARRAY_BUFFER>,
50 <ARRAY_BUFFER>,
51 . . .
52]
53 });
54 });
55 }
56 });
57</script>

Find the working code sample here under /More Samples/Linearization

Supported browsers and platforms
Displaying linearized PDFs using PDF Embed API will work in browsers
which support SharedArrayBuffer, such as Chrome and Chromium-based
Microsoft Edge desktop browsers. In case of other desktop browsers and
mobile browsers, it will automatically fall back to the normal behaviour
(non-linearized flow) of downloading the entire PDF before file preview.

Other supported functionalities
	Support for linearized PDF is currently available only in Full
window embed mode. In all other embed modes, it will automatically
fall back to the normal file rendering approach.
	As the main focus here is to enable fast rendering of PDFs, certain
functionalities which depend on the complete PDF buffer are not
available immediately. These functionalities (for example,
annotation tools and APIs, print and download PDF, document search,
etc.) will be available once the PDF is fully downloaded and website
developers will be notified through the PDF_VIEWER_READY event. To
know more about this event, see the section Basic events under
Analytics.

Enabling byte-streaming on a server
The server where the linearized PDFs are hosted should have support of
byte-streaming to be able to send partial file content via HTTP 206
calls.
For example, you can follow these steps to enable byte-streaming in an
Apache 2.4 server.
Open httpd.conf and make below changes:
	Uncomment this line: LoadModule headers_module modules/mod_headers.so
	In your respective <Directory>, set headers

<Directory "${SRVROOT}/htdocs/<__location_of_PDFs_____>">
 <IfModule mod_headers.c>
 # To allow byte-streaming and range support
 Header set Access-Control-Allow-Headers "Range"
 </IfModule>
</Directory>
CopyCopied to your clipboard

1<Directory "${SRVROOT}/htdocs/<__location_of_PDFs_____>">
2 <IfModule mod_headers.c>
3 # To allow byte-streaming and range support
4 Header set Access-Control-Allow-Headers "Range"
5 </IfModule>
6</Directory>

Please see this
article
to know more about Access-Control-Allow-Headers.

Language support

The PDF Embed API supports a number of languages. The default language
is English (en-US), but you can select another language by passing the
locale code variable when creating the AdobeDC.View object.

var adobeDCView = new AdobeDC.View({
 clientID: "<YOUR_CLIENT_ID>",
 divId: "adobe-dc-view",
 locale: "ja-JP",
CopyCopied to your clipboard

1var adobeDCView = new AdobeDC.View({
2 clientID: "<YOUR_CLIENT_ID>",
3 divId: "adobe-dc-view",
4 locale: "ja-JP",

Supported languages
	Language	Locale Code
	Danish
	da-DK

	Dutch
	nl-NL

	English (United Kingdom)
	en-GB

	English (United States)
	en-US

	Finnish
	fi-FI

	French
	fr-FR

	German
	de-DE

	Italian
	it-IT

	Japanese
	ja-JP

	Norwegian
	nb-NO

	Portuguese
	pt-BR

	Spanish
	es-ES

	Swedish
	sv-SE

	Czech
	cs-CZ

	Korean
	ko-KR

	Polish
	pl-PL

	Russian
	ru-RU

	Turkish
	tr-TR

	Chinese
	zh-CN

	Chinese
	zh-TW

Troubleshooting

Troubleshooting a web app and the PDF Embed API is straightforward web
development. Use the tools you're familiar with; for example, your IDE
or Chrome Developer Tools.
Why is my URL value not used to access the PDF data?
If you pass both a file URL and file promise, the promise is used and
the URL value is ignored.
Why do I see the error "Invalid client Id provided"?
Either your client ID is incorrect, or you are using it on a domain
other than the one you registered.
Getting Started

UI Customization

Last updated 12/13/2023

Was this helpful?Yes
No

On this page

	Embed a PDF viewer
	Passing file content	File URL
	Cross-origin resource sharing
	File promise

	Embed modes	Full window embed mode
	Sized container embed mode
	In-Line embed mode
	Lightbox embed mode
	Focus on PDF rendering

	PDF Linearization	Display linearized PDFs
	File URL
	File Promise
	Supported browsers and platforms
	Other supported functionalities
	Enabling byte-streaming on a server

	Language support
	Troubleshooting

APIs and Services
	Adobe Creative Cloud
	Adobe Experience Platform
	Adobe Document Cloud
	Adobe Cloud Manager
	Adobe Analytics
	App Builder
	View all APIs and ServicesView all

Community
	Adobe Tech Blog
	Adobe on GitHub
	Adobe Developer on YouTube
	Adobe Developer on Twitter
	Community Forums

Support
	Adobe Developer support
	Adobe Product support

Adobe Developer
	Adobe Developer Console
	Developer Distribution
	Open source at Adobe
	Download SDKs
	Authentication
	Careers

	Privacy
	Terms of Use
	
	Do not sell or share my personal information

	AdChoices

Copyright © 2024 Adobe. All rights reserved.

