Package opennlp.tools.ml.maxent
Class GISModel
- java.lang.Object
 - 
- opennlp.tools.ml.model.AbstractModel
 - 
- opennlp.tools.ml.maxent.GISModel
 
 
 
- 
- All Implemented Interfaces:
 MaxentModel
public final class GISModel extends AbstractModel
A maximum entropy model which has been trained using the Generalized Iterative Scaling procedure (implemented in GIS.java). 
- 
- 
Nested Class Summary
- 
Nested classes/interfaces inherited from class opennlp.tools.ml.model.AbstractModel
AbstractModel.ModelType 
 - 
 
- 
Constructor Summary
Constructors Constructor Description GISModel(Context[] params, java.lang.String[] predLabels, java.lang.String[] outcomeNames)Creates a new model with the specified parameters, outcome names, and predicate/feature labels.GISModel(Context[] params, java.lang.String[] predLabels, java.lang.String[] outcomeNames, Prior prior)Creates a new model with the specified parameters, outcome names, and predicate/feature labels. 
- 
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description static double[]eval(int[] context, double[] prior, EvalParameters model)Use this model to evaluate a context and return an array of the likelihood of each outcome given the specified context and the specified parameters.double[]eval(java.lang.String[] context)Use this model to evaluate a context and return an array of the likelihood of each outcome given that context.double[]eval(java.lang.String[] context, double[] outsums)Evaluates a context.double[]eval(java.lang.String[] context, float[] values)Evaluates a contexts with the specified context values.double[]eval(java.lang.String[] context, float[] values, double[] outsums)Use this model to evaluate a context and return an array of the likelihood of each outcome given that context.- 
Methods inherited from class opennlp.tools.ml.model.AbstractModel
equals, getAllOutcomes, getBestOutcome, getDataStructures, getIndex, getModelType, getNumOutcomes, getOutcome, hashCode 
 - 
 
 - 
 
- 
- 
Constructor Detail
- 
GISModel
public GISModel(Context[] params, java.lang.String[] predLabels, java.lang.String[] outcomeNames)
Creates a new model with the specified parameters, outcome names, and predicate/feature labels.- Parameters:
 params- The parameters of the model.predLabels- The names of the predicates used in this model.outcomeNames- The names of the outcomes this model predicts.
 
- 
GISModel
public GISModel(Context[] params, java.lang.String[] predLabels, java.lang.String[] outcomeNames, Prior prior)
Creates a new model with the specified parameters, outcome names, and predicate/feature labels.- Parameters:
 params- The parameters of the model.predLabels- The names of the predicates used in this model.outcomeNames- The names of the outcomes this model predicts.prior- The prior to be used with this model.
 
 - 
 
- 
Method Detail
- 
eval
public final double[] eval(java.lang.String[] context)
Use this model to evaluate a context and return an array of the likelihood of each outcome given that context.- Parameters:
 context- The names of the predicates which have been observed at the present decision point.- Returns:
 - The normalized probabilities for the outcomes given the context. The indexes of the double[] are the outcome ids, and the actual string representation of the outcomes can be obtained from the method getOutcome(int i).
 
 
- 
eval
public final double[] eval(java.lang.String[] context, float[] values)Description copied from interface:MaxentModelEvaluates a contexts with the specified context values.- Parameters:
 context- A list of String names of the contextual predicates which are to be evaluated together.values- The values associated with each context.- Returns:
 - an array of the probabilities for each of the different outcomes, all of which sum to 1.
 
 
- 
eval
public final double[] eval(java.lang.String[] context, double[] outsums)Description copied from interface:MaxentModelEvaluates a context.- Parameters:
 context- A list of String names of the contextual predicates which are to be evaluated together.outsums- An array which is populated with the probabilities for each of the different outcomes, all of which sum to 1.- Returns:
 - an array of the probabilities for each of the different outcomes, all of which sum to 1.
 
 
- 
eval
public final double[] eval(java.lang.String[] context, float[] values, double[] outsums)Use this model to evaluate a context and return an array of the likelihood of each outcome given that context.- Parameters:
 context- The names of the predicates which have been observed at the present decision point.outsums- This is where the distribution is stored.- Returns:
 - The normalized probabilities for the outcomes given the context. The indexes of the double[] are the outcome ids, and the actual string representation of the outcomes can be obtained from the method getOutcome(int i).
 
 
- 
eval
public static double[] eval(int[] context, double[] prior, EvalParameters model)Use this model to evaluate a context and return an array of the likelihood of each outcome given the specified context and the specified parameters.- Parameters:
 context- The integer values of the predicates which have been observed at the present decision point.prior- The prior distribution for the specified context.model- The set of parametes used in this computation.- Returns:
 - The normalized probabilities for the outcomes given the context. The indexes of the double[] are the outcome ids, and the actual string representation of the outcomes can be obtained from the method getOutcome(int i).
 
 
 - 
 
 -