Class MultiSimilarity
- java.lang.Object
-
- org.apache.lucene.search.similarities.Similarity
-
- org.apache.lucene.search.similarities.MultiSimilarity
-
public class MultiSimilarity extends Similarity
Implements the CombSUM method for combining evidence from multiple similarity values described in: Joseph A. Shaw, Edward A. Fox. In Text REtrieval Conference (1993), pp. 243-252
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from class org.apache.lucene.search.similarities.Similarity
Similarity.SimScorer, Similarity.SimWeight
-
-
Constructor Summary
Constructors Constructor Description MultiSimilarity(Similarity[] sims)Creates a MultiSimilarity which will sum the scores of the providedsims.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description longcomputeNorm(FieldInvertState state)Computes the normalization value for a field, given the accumulated state of term processing for this field (seeFieldInvertState).Similarity.SimWeightcomputeWeight(float queryBoost, CollectionStatistics collectionStats, TermStatistics... termStats)Compute any collection-level weight (e.g.Similarity.SimScorersimScorer(Similarity.SimWeight stats, AtomicReaderContext context)Creates a newSimilarity.SimScorerto score matching documents from a segment of the inverted index.-
Methods inherited from class org.apache.lucene.search.similarities.Similarity
coord, queryNorm
-
-
-
-
Constructor Detail
-
MultiSimilarity
public MultiSimilarity(Similarity[] sims)
Creates a MultiSimilarity which will sum the scores of the providedsims.
-
-
Method Detail
-
computeNorm
public long computeNorm(FieldInvertState state)
Description copied from class:SimilarityComputes the normalization value for a field, given the accumulated state of term processing for this field (seeFieldInvertState).Matches in longer fields are less precise, so implementations of this method usually set smaller values when
state.getLength()is large, and larger values whenstate.getLength()is small.- Specified by:
computeNormin classSimilarity- Parameters:
state- current processing state for this field- Returns:
- computed norm value
-
computeWeight
public Similarity.SimWeight computeWeight(float queryBoost, CollectionStatistics collectionStats, TermStatistics... termStats)
Description copied from class:SimilarityCompute any collection-level weight (e.g. IDF, average document length, etc) needed for scoring a query.- Specified by:
computeWeightin classSimilarity- Parameters:
queryBoost- the query-time boost.collectionStats- collection-level statistics, such as the number of tokens in the collection.termStats- term-level statistics, such as the document frequency of a term across the collection.- Returns:
- SimWeight object with the information this Similarity needs to score a query.
-
simScorer
public Similarity.SimScorer simScorer(Similarity.SimWeight stats, AtomicReaderContext context) throws java.io.IOException
Description copied from class:SimilarityCreates a newSimilarity.SimScorerto score matching documents from a segment of the inverted index.- Specified by:
simScorerin classSimilarity- Parameters:
stats- collection information fromSimilarity.computeWeight(float, CollectionStatistics, TermStatistics...)context- segment of the inverted index to be scored.- Returns:
- SloppySimScorer for scoring documents across
context - Throws:
java.io.IOException- if there is a low-level I/O error
-
-