Class GammaDistributionImpl
- java.lang.Object
-
- org.apache.commons.math.distribution.AbstractDistribution
-
- org.apache.commons.math.distribution.AbstractContinuousDistribution
-
- org.apache.commons.math.distribution.GammaDistributionImpl
-
- All Implemented Interfaces:
java.io.Serializable
,ContinuousDistribution
,Distribution
,GammaDistribution
,HasDensity<java.lang.Double>
public class GammaDistributionImpl extends AbstractContinuousDistribution implements GammaDistribution, java.io.Serializable
The default implementation ofGammaDistribution
.- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description static double
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy
-
Constructor Summary
Constructors Constructor Description GammaDistributionImpl(double alpha, double beta)
Create a new gamma distribution with the given alpha and beta values.GammaDistributionImpl(double alpha, double beta, double inverseCumAccuracy)
Create a new gamma distribution with the given alpha and beta values.
-
Method Summary
All Methods Instance Methods Concrete Methods Deprecated Methods Modifier and Type Method Description double
cumulativeProbability(double x)
For this distribution, X, this method returns P(X < x).double
density(double x)
Returns the probability density for a particular point.double
density(java.lang.Double x)
Deprecated.double
getAlpha()
Access the shape parameter, alphadouble
getBeta()
Access the scale parameter, betadouble
getNumericalMean()
Returns the mean.double
getNumericalVariance()
Returns the variance.double
getSupportLowerBound()
Returns the upper bound of the support for the distribution.double
getSupportUpperBound()
Returns the upper bound of the support for the distribution.double
inverseCumulativeProbability(double p)
For this distribution, X, this method returns the critical point x, such that P(X < x) =p
.void
setAlpha(double alpha)
Deprecated.as of 2.1 (class will become immutable in 3.0)void
setBeta(double newBeta)
Deprecated.as of 2.1 (class will become immutable in 3.0)-
Methods inherited from class org.apache.commons.math.distribution.AbstractContinuousDistribution
reseedRandomGenerator, sample, sample
-
Methods inherited from class org.apache.commons.math.distribution.AbstractDistribution
cumulativeProbability
-
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.apache.commons.math.distribution.Distribution
cumulativeProbability
-
-
-
-
Field Detail
-
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy- Since:
- 2.1
- See Also:
- Constant Field Values
-
-
Constructor Detail
-
GammaDistributionImpl
public GammaDistributionImpl(double alpha, double beta)
Create a new gamma distribution with the given alpha and beta values.- Parameters:
alpha
- the shape parameter.beta
- the scale parameter.
-
GammaDistributionImpl
public GammaDistributionImpl(double alpha, double beta, double inverseCumAccuracy)
Create a new gamma distribution with the given alpha and beta values.- Parameters:
alpha
- the shape parameter.beta
- the scale parameter.inverseCumAccuracy
- the maximum absolute error in inverse cumulative probability estimates (defaults toDEFAULT_INVERSE_ABSOLUTE_ACCURACY
)- Since:
- 2.1
-
-
Method Detail
-
cumulativeProbability
public double cumulativeProbability(double x) throws MathException
For this distribution, X, this method returns P(X < x). The implementation of this method is based on:- Chi-Squared Distribution, equation (9).
- Casella, G., & Berger, R. (1990). Statistical Inference. Belmont, CA: Duxbury Press.
- Specified by:
cumulativeProbability
in interfaceDistribution
- Parameters:
x
- the value at which the CDF is evaluated.- Returns:
- CDF for this distribution.
- Throws:
MathException
- if the cumulative probability can not be computed due to convergence or other numerical errors.
-
inverseCumulativeProbability
public double inverseCumulativeProbability(double p) throws MathException
For this distribution, X, this method returns the critical point x, such that P(X < x) =p
.Returns 0 for p=0 and
Double.POSITIVE_INFINITY
for p=1.- Specified by:
inverseCumulativeProbability
in interfaceContinuousDistribution
- Overrides:
inverseCumulativeProbability
in classAbstractContinuousDistribution
- Parameters:
p
- the desired probability- Returns:
- x, such that P(X < x) =
p
- Throws:
MathException
- if the inverse cumulative probability can not be computed due to convergence or other numerical errors.java.lang.IllegalArgumentException
- ifp
is not a valid probability.
-
setAlpha
@Deprecated public void setAlpha(double alpha)
Deprecated.as of 2.1 (class will become immutable in 3.0)Modify the shape parameter, alpha.- Specified by:
setAlpha
in interfaceGammaDistribution
- Parameters:
alpha
- the new shape parameter.- Throws:
java.lang.IllegalArgumentException
- ifalpha
is not positive.
-
getAlpha
public double getAlpha()
Access the shape parameter, alpha- Specified by:
getAlpha
in interfaceGammaDistribution
- Returns:
- alpha.
-
setBeta
@Deprecated public void setBeta(double newBeta)
Deprecated.as of 2.1 (class will become immutable in 3.0)Modify the scale parameter, beta.- Specified by:
setBeta
in interfaceGammaDistribution
- Parameters:
newBeta
- the new scale parameter.- Throws:
java.lang.IllegalArgumentException
- ifnewBeta
is not positive.
-
getBeta
public double getBeta()
Access the scale parameter, beta- Specified by:
getBeta
in interfaceGammaDistribution
- Returns:
- beta.
-
density
public double density(double x)
Returns the probability density for a particular point.- Overrides:
density
in classAbstractContinuousDistribution
- Parameters:
x
- The point at which the density should be computed.- Returns:
- The pdf at point x.
-
density
@Deprecated public double density(java.lang.Double x)
Deprecated.Return the probability density for a particular point.- Specified by:
density
in interfaceGammaDistribution
- Specified by:
density
in interfaceHasDensity<java.lang.Double>
- Parameters:
x
- The point at which the density should be computed.- Returns:
- The pdf at point x.
-
getSupportLowerBound
public double getSupportLowerBound()
Returns the upper bound of the support for the distribution. The lower bound of the support is always 0, regardless of the parameters.- Returns:
- lower bound of the support (always 0)
- Since:
- 2.2
-
getSupportUpperBound
public double getSupportUpperBound()
Returns the upper bound of the support for the distribution. The upper bound of the support is always positive infinity, regardless of the parameters.- Returns:
- upper bound of the support (always Double.POSITIVE_INFINITY)
- Since:
- 2.2
-
getNumericalMean
public double getNumericalMean()
Returns the mean. For shape parameteralpha
and scale parameterbeta
, the mean isalpha * beta
- Returns:
- the mean
- Since:
- 2.2
-
getNumericalVariance
public double getNumericalVariance()
Returns the variance. For shape parameteralpha
and scale parameterbeta
, the variance isalpha * beta^2
- Returns:
- the variance
- Since:
- 2.2
-
-