Class TDistributionImpl
- java.lang.Object
-
- org.apache.commons.math.distribution.AbstractDistribution
-
- org.apache.commons.math.distribution.AbstractContinuousDistribution
-
- org.apache.commons.math.distribution.TDistributionImpl
-
- All Implemented Interfaces:
java.io.Serializable
,ContinuousDistribution
,Distribution
,TDistribution
public class TDistributionImpl extends AbstractContinuousDistribution implements TDistribution, java.io.Serializable
Default implementation ofTDistribution
.- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description static double
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy
-
Constructor Summary
Constructors Constructor Description TDistributionImpl(double degreesOfFreedom)
Create a t distribution using the given degrees of freedom.TDistributionImpl(double degreesOfFreedom, double inverseCumAccuracy)
Create a t distribution using the given degrees of freedom and the specified inverse cumulative probability absolute accuracy.
-
Method Summary
All Methods Instance Methods Concrete Methods Deprecated Methods Modifier and Type Method Description double
cumulativeProbability(double x)
For this distribution, X, this method returns P(X <x
).double
density(double x)
Returns the probability density for a particular point.double
getDegreesOfFreedom()
Access the degrees of freedom.double
getNumericalMean()
Returns the mean.double
getNumericalVariance()
Returns the variance.double
getSupportLowerBound()
Returns the lower bound of the support for the distribution.double
getSupportUpperBound()
Returns the upper bound of the support for the distribution.double
inverseCumulativeProbability(double p)
For this distribution, X, this method returns the critical point x, such that P(X < x) =p
.void
setDegreesOfFreedom(double degreesOfFreedom)
Deprecated.as of 2.1 (class will become immutable in 3.0)-
Methods inherited from class org.apache.commons.math.distribution.AbstractContinuousDistribution
reseedRandomGenerator, sample, sample
-
Methods inherited from class org.apache.commons.math.distribution.AbstractDistribution
cumulativeProbability
-
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.apache.commons.math.distribution.Distribution
cumulativeProbability
-
-
-
-
Field Detail
-
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy- Since:
- 2.1
- See Also:
- Constant Field Values
-
-
Constructor Detail
-
TDistributionImpl
public TDistributionImpl(double degreesOfFreedom, double inverseCumAccuracy)
Create a t distribution using the given degrees of freedom and the specified inverse cumulative probability absolute accuracy.- Parameters:
degreesOfFreedom
- the degrees of freedom.inverseCumAccuracy
- the maximum absolute error in inverse cumulative probability estimates (defaults toDEFAULT_INVERSE_ABSOLUTE_ACCURACY
)- Since:
- 2.1
-
TDistributionImpl
public TDistributionImpl(double degreesOfFreedom)
Create a t distribution using the given degrees of freedom.- Parameters:
degreesOfFreedom
- the degrees of freedom.
-
-
Method Detail
-
setDegreesOfFreedom
@Deprecated public void setDegreesOfFreedom(double degreesOfFreedom)
Deprecated.as of 2.1 (class will become immutable in 3.0)Modify the degrees of freedom.- Specified by:
setDegreesOfFreedom
in interfaceTDistribution
- Parameters:
degreesOfFreedom
- the new degrees of freedom.
-
getDegreesOfFreedom
public double getDegreesOfFreedom()
Access the degrees of freedom.- Specified by:
getDegreesOfFreedom
in interfaceTDistribution
- Returns:
- the degrees of freedom.
-
density
public double density(double x)
Returns the probability density for a particular point.- Overrides:
density
in classAbstractContinuousDistribution
- Parameters:
x
- The point at which the density should be computed.- Returns:
- The pdf at point x.
- Since:
- 2.1
-
cumulativeProbability
public double cumulativeProbability(double x) throws MathException
For this distribution, X, this method returns P(X <x
).- Specified by:
cumulativeProbability
in interfaceDistribution
- Parameters:
x
- the value at which the CDF is evaluated.- Returns:
- CDF evaluated at
x
. - Throws:
MathException
- if the cumulative probability can not be computed due to convergence or other numerical errors.
-
inverseCumulativeProbability
public double inverseCumulativeProbability(double p) throws MathException
For this distribution, X, this method returns the critical point x, such that P(X < x) =p
.Returns
Double.NEGATIVE_INFINITY
for p=0 andDouble.POSITIVE_INFINITY
for p=1.- Specified by:
inverseCumulativeProbability
in interfaceContinuousDistribution
- Overrides:
inverseCumulativeProbability
in classAbstractContinuousDistribution
- Parameters:
p
- the desired probability- Returns:
- x, such that P(X < x) =
p
- Throws:
MathException
- if the inverse cumulative probability can not be computed due to convergence or other numerical errors.java.lang.IllegalArgumentException
- ifp
is not a valid probability.
-
getSupportLowerBound
public double getSupportLowerBound()
Returns the lower bound of the support for the distribution. The lower bound of the support is always negative infinity no matter the parameters.- Returns:
- lower bound of the support (always Double.NEGATIVE_INFINITY)
- Since:
- 2.2
-
getSupportUpperBound
public double getSupportUpperBound()
Returns the upper bound of the support for the distribution. The upper bound of the support is always positive infinity no matter the parameters.- Returns:
- upper bound of the support (always Double.POSITIVE_INFINITY)
- Since:
- 2.2
-
getNumericalMean
public double getNumericalMean()
Returns the mean. For degrees of freedom parameter df, the mean is- if
df > 1
then0
- else
undefined
- Returns:
- the mean
- Since:
- 2.2
- if
-
getNumericalVariance
public double getNumericalVariance()
Returns the variance. For degrees of freedom parameter df, the variance is- if
df > 2
thendf / (df - 2)
- if
1 < df <= 2
thenpositive infinity
- else
undefined
- Returns:
- the variance
- Since:
- 2.2
- if
-
-