Class MultiStartDifferentiableMultivariateRealOptimizer
- java.lang.Object
-
- org.apache.commons.math.optimization.MultiStartDifferentiableMultivariateRealOptimizer
-
- All Implemented Interfaces:
DifferentiableMultivariateRealOptimizer
public class MultiStartDifferentiableMultivariateRealOptimizer extends java.lang.Object implements DifferentiableMultivariateRealOptimizer
Special implementation of theDifferentiableMultivariateRealOptimizer
interface adding multi-start features to an existing optimizer.This class wraps a classical optimizer to use it several times in turn with different starting points in order to avoid being trapped into a local extremum when looking for a global one.
- Since:
- 2.0
-
-
Constructor Summary
Constructors Constructor Description MultiStartDifferentiableMultivariateRealOptimizer(DifferentiableMultivariateRealOptimizer optimizer, int starts, RandomVectorGenerator generator)
Create a multi-start optimizer from a single-start optimizer
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description RealConvergenceChecker
getConvergenceChecker()
Get the convergence checker.int
getEvaluations()
Get the number of evaluations of the objective function.int
getGradientEvaluations()
Get the number of evaluations of the objective function gradient.int
getIterations()
Get the number of iterations realized by the algorithm.int
getMaxEvaluations()
Get the maximal number of functions evaluations.int
getMaxIterations()
Get the maximal number of iterations of the algorithm.RealPointValuePair[]
getOptima()
Get all the optima found during the last call tooptimize
.RealPointValuePair
optimize(DifferentiableMultivariateRealFunction f, GoalType goalType, double[] startPoint)
Optimizes an objective function.void
setConvergenceChecker(RealConvergenceChecker checker)
Set the convergence checker.void
setMaxEvaluations(int maxEvaluations)
Set the maximal number of functions evaluations.void
setMaxIterations(int maxIterations)
Set the maximal number of iterations of the algorithm.
-
-
-
Constructor Detail
-
MultiStartDifferentiableMultivariateRealOptimizer
public MultiStartDifferentiableMultivariateRealOptimizer(DifferentiableMultivariateRealOptimizer optimizer, int starts, RandomVectorGenerator generator)
Create a multi-start optimizer from a single-start optimizer- Parameters:
optimizer
- single-start optimizer to wrapstarts
- number of starts to perform (including the first one), multi-start is disabled if value is less than or equal to 1generator
- random vector generator to use for restarts
-
-
Method Detail
-
getOptima
public RealPointValuePair[] getOptima() throws java.lang.IllegalStateException
Get all the optima found during the last call tooptimize
.The optimizer stores all the optima found during a set of restarts. The
optimize
method returns the best point only. This method returns all the points found at the end of each starts, including the best one already returned by theoptimize
method.The returned array as one element for each start as specified in the constructor. It is ordered with the results from the runs that did converge first, sorted from best to worst objective value (i.e in ascending order if minimizing and in descending order if maximizing), followed by and null elements corresponding to the runs that did not converge. This means all elements will be null if the
optimize
method did throw aConvergenceException
). This also means that if the first element is non null, it is the best point found across all starts.- Returns:
- array containing the optima
- Throws:
java.lang.IllegalStateException
- ifoptimize
has not been called
-
setMaxIterations
public void setMaxIterations(int maxIterations)
Set the maximal number of iterations of the algorithm.- Specified by:
setMaxIterations
in interfaceDifferentiableMultivariateRealOptimizer
- Parameters:
maxIterations
- maximal number of function calls
-
getMaxIterations
public int getMaxIterations()
Get the maximal number of iterations of the algorithm.- Specified by:
getMaxIterations
in interfaceDifferentiableMultivariateRealOptimizer
- Returns:
- maximal number of iterations
-
getIterations
public int getIterations()
Get the number of iterations realized by the algorithm.The number of evaluations corresponds to the last call to the
optimize
method. It is 0 if the method has not been called yet.- Specified by:
getIterations
in interfaceDifferentiableMultivariateRealOptimizer
- Returns:
- number of iterations
-
setMaxEvaluations
public void setMaxEvaluations(int maxEvaluations)
Set the maximal number of functions evaluations.- Specified by:
setMaxEvaluations
in interfaceDifferentiableMultivariateRealOptimizer
- Parameters:
maxEvaluations
- maximal number of function evaluations
-
getMaxEvaluations
public int getMaxEvaluations()
Get the maximal number of functions evaluations.- Specified by:
getMaxEvaluations
in interfaceDifferentiableMultivariateRealOptimizer
- Returns:
- maximal number of functions evaluations
-
getEvaluations
public int getEvaluations()
Get the number of evaluations of the objective function.The number of evaluations corresponds to the last call to the
optimize
method. It is 0 if the method has not been called yet.- Specified by:
getEvaluations
in interfaceDifferentiableMultivariateRealOptimizer
- Returns:
- number of evaluations of the objective function
-
getGradientEvaluations
public int getGradientEvaluations()
Get the number of evaluations of the objective function gradient.The number of evaluations corresponds to the last call to the
optimize
method. It is 0 if the method has not been called yet.- Specified by:
getGradientEvaluations
in interfaceDifferentiableMultivariateRealOptimizer
- Returns:
- number of evaluations of the objective function gradient
-
setConvergenceChecker
public void setConvergenceChecker(RealConvergenceChecker checker)
Set the convergence checker.- Specified by:
setConvergenceChecker
in interfaceDifferentiableMultivariateRealOptimizer
- Parameters:
checker
- object to use to check for convergence
-
getConvergenceChecker
public RealConvergenceChecker getConvergenceChecker()
Get the convergence checker.- Specified by:
getConvergenceChecker
in interfaceDifferentiableMultivariateRealOptimizer
- Returns:
- object used to check for convergence
-
optimize
public RealPointValuePair optimize(DifferentiableMultivariateRealFunction f, GoalType goalType, double[] startPoint) throws FunctionEvaluationException, OptimizationException, FunctionEvaluationException
Optimizes an objective function.- Specified by:
optimize
in interfaceDifferentiableMultivariateRealOptimizer
- Parameters:
f
- objective functiongoalType
- type of optimization goal: eitherGoalType.MAXIMIZE
orGoalType.MINIMIZE
startPoint
- the start point for optimization- Returns:
- the point/value pair giving the optimal value for objective function
- Throws:
FunctionEvaluationException
- if the objective function throws one during the searchOptimizationException
- if the algorithm failed to converge
-
-