Class AbstractScalarDifferentiableOptimizer
- java.lang.Object
-
- org.apache.commons.math.optimization.general.AbstractScalarDifferentiableOptimizer
-
- All Implemented Interfaces:
DifferentiableMultivariateRealOptimizer
- Direct Known Subclasses:
NonLinearConjugateGradientOptimizer
,PowellOptimizer
public abstract class AbstractScalarDifferentiableOptimizer extends java.lang.Object implements DifferentiableMultivariateRealOptimizer
Base class for implementing optimizers for multivariate scalar functions.This base class handles the boilerplate methods associated to thresholds settings, iterations and evaluations counting.
- Since:
- 2.0
-
-
Field Summary
Fields Modifier and Type Field Description static int
DEFAULT_MAX_ITERATIONS
Default maximal number of iterations allowed.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description RealConvergenceChecker
getConvergenceChecker()
Get the convergence checker.int
getEvaluations()
Get the number of evaluations of the objective function.int
getGradientEvaluations()
Get the number of evaluations of the objective function gradient.int
getIterations()
Get the number of iterations realized by the algorithm.int
getMaxEvaluations()
Get the maximal number of functions evaluations.int
getMaxIterations()
Get the maximal number of iterations of the algorithm.RealPointValuePair
optimize(DifferentiableMultivariateRealFunction f, GoalType goalType, double[] startPoint)
Optimizes an objective function.void
setConvergenceChecker(RealConvergenceChecker convergenceChecker)
Set the convergence checker.void
setMaxEvaluations(int maxEvaluations)
Set the maximal number of functions evaluations.void
setMaxIterations(int maxIterations)
Set the maximal number of iterations of the algorithm.
-
-
-
Field Detail
-
DEFAULT_MAX_ITERATIONS
public static final int DEFAULT_MAX_ITERATIONS
Default maximal number of iterations allowed.- See Also:
- Constant Field Values
-
-
Method Detail
-
setMaxIterations
public void setMaxIterations(int maxIterations)
Set the maximal number of iterations of the algorithm.- Specified by:
setMaxIterations
in interfaceDifferentiableMultivariateRealOptimizer
- Parameters:
maxIterations
- maximal number of function calls
-
getMaxIterations
public int getMaxIterations()
Get the maximal number of iterations of the algorithm.- Specified by:
getMaxIterations
in interfaceDifferentiableMultivariateRealOptimizer
- Returns:
- maximal number of iterations
-
getIterations
public int getIterations()
Get the number of iterations realized by the algorithm.The number of evaluations corresponds to the last call to the
optimize
method. It is 0 if the method has not been called yet.- Specified by:
getIterations
in interfaceDifferentiableMultivariateRealOptimizer
- Returns:
- number of iterations
-
setMaxEvaluations
public void setMaxEvaluations(int maxEvaluations)
Set the maximal number of functions evaluations.- Specified by:
setMaxEvaluations
in interfaceDifferentiableMultivariateRealOptimizer
- Parameters:
maxEvaluations
- maximal number of function evaluations
-
getMaxEvaluations
public int getMaxEvaluations()
Get the maximal number of functions evaluations.- Specified by:
getMaxEvaluations
in interfaceDifferentiableMultivariateRealOptimizer
- Returns:
- maximal number of functions evaluations
-
getEvaluations
public int getEvaluations()
Get the number of evaluations of the objective function.The number of evaluations corresponds to the last call to the
optimize
method. It is 0 if the method has not been called yet.- Specified by:
getEvaluations
in interfaceDifferentiableMultivariateRealOptimizer
- Returns:
- number of evaluations of the objective function
-
getGradientEvaluations
public int getGradientEvaluations()
Get the number of evaluations of the objective function gradient.The number of evaluations corresponds to the last call to the
optimize
method. It is 0 if the method has not been called yet.- Specified by:
getGradientEvaluations
in interfaceDifferentiableMultivariateRealOptimizer
- Returns:
- number of evaluations of the objective function gradient
-
setConvergenceChecker
public void setConvergenceChecker(RealConvergenceChecker convergenceChecker)
Set the convergence checker.- Specified by:
setConvergenceChecker
in interfaceDifferentiableMultivariateRealOptimizer
- Parameters:
convergenceChecker
- object to use to check for convergence
-
getConvergenceChecker
public RealConvergenceChecker getConvergenceChecker()
Get the convergence checker.- Specified by:
getConvergenceChecker
in interfaceDifferentiableMultivariateRealOptimizer
- Returns:
- object used to check for convergence
-
optimize
public RealPointValuePair optimize(DifferentiableMultivariateRealFunction f, GoalType goalType, double[] startPoint) throws FunctionEvaluationException, OptimizationException, java.lang.IllegalArgumentException
Optimizes an objective function.- Specified by:
optimize
in interfaceDifferentiableMultivariateRealOptimizer
- Parameters:
f
- objective functiongoalType
- type of optimization goal: eitherGoalType.MAXIMIZE
orGoalType.MINIMIZE
startPoint
- the start point for optimization- Returns:
- the point/value pair giving the optimal value for objective function
- Throws:
FunctionEvaluationException
- if the objective function throws one during the searchOptimizationException
- if the algorithm failed to convergejava.lang.IllegalArgumentException
- if the start point dimension is wrong
-
-