Interface MultipleLinearRegression
- 
- All Known Implementing Classes:
 AbstractMultipleLinearRegression,GLSMultipleLinearRegression,OLSMultipleLinearRegression
public interface MultipleLinearRegressionThe multiple linear regression can be represented in matrix-notation.y=X*b+u
where y is ann-vectorregressand, X is a[n,k]matrix whosekcolumns are called regressors, b isk-vectorof regression parameters anduis ann-vectorof error terms or residuals. The notation is quite standard in literature, cf eg Davidson and MacKinnon, Econometrics Theory and Methods, 2004.- Since:
 - 2.0
 
 
- 
- 
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description doubleestimateRegressandVariance()Returns the variance of the regressand, ie Var(y).double[]estimateRegressionParameters()Estimates the regression parameters b.double[]estimateRegressionParametersStandardErrors()Returns the standard errors of the regression parameters.double[][]estimateRegressionParametersVariance()Estimates the variance of the regression parameters, ie Var(b).double[]estimateResiduals()Estimates the residuals, ie u = y - X*b. 
 - 
 
- 
- 
Method Detail
- 
estimateRegressionParameters
double[] estimateRegressionParameters()
Estimates the regression parameters b.- Returns:
 - The [k,1] array representing b
 
 
- 
estimateRegressionParametersVariance
double[][] estimateRegressionParametersVariance()
Estimates the variance of the regression parameters, ie Var(b).- Returns:
 - The [k,k] array representing the variance of b
 
 
- 
estimateResiduals
double[] estimateResiduals()
Estimates the residuals, ie u = y - X*b.- Returns:
 - The [n,1] array representing the residuals
 
 
- 
estimateRegressandVariance
double estimateRegressandVariance()
Returns the variance of the regressand, ie Var(y).- Returns:
 - The double representing the variance of y
 
 
- 
estimateRegressionParametersStandardErrors
double[] estimateRegressionParametersStandardErrors()
Returns the standard errors of the regression parameters.- Returns:
 - standard errors of estimated regression parameters
 
 
 - 
 
 -