Class TokenSources
- java.lang.Object
-
- org.apache.lucene.search.highlight.TokenSources
-
public class TokenSources extends java.lang.Object
Hides implementation issues associated with obtaining a TokenStream for use with the higlighter - can obtain from TermFreqVectors with offsets and (optionally) positions or from Analyzer class reparsing the stored content.
-
-
Constructor Summary
Constructors Constructor Description TokenSources()
-
Method Summary
All Methods Static Methods Concrete Methods Modifier and Type Method Description static TokenStream
getAnyTokenStream(IndexReader reader, int docId, java.lang.String field, Analyzer analyzer)
A convenience method that tries a number of approaches to getting a token stream.static TokenStream
getAnyTokenStream(IndexReader reader, int docId, java.lang.String field, Document doc, Analyzer analyzer)
A convenience method that tries to first get a TermPositionVector for the specified docId, then, falls back to using the passed inDocument
to retrieve the TokenStream.static TokenStream
getTokenStream(java.lang.String field, java.lang.String contents, Analyzer analyzer)
static TokenStream
getTokenStream(Document doc, java.lang.String field, Analyzer analyzer)
static TokenStream
getTokenStream(IndexReader reader, int docId, java.lang.String field, Analyzer analyzer)
static TokenStream
getTokenStream(Terms vector)
static TokenStream
getTokenStream(Terms tpv, boolean tokenPositionsGuaranteedContiguous)
Low level api.static TokenStream
getTokenStreamWithOffsets(IndexReader reader, int docId, java.lang.String field)
Returns aTokenStream
with positions and offsets constructed from field termvectors.
-
-
-
Method Detail
-
getAnyTokenStream
public static TokenStream getAnyTokenStream(IndexReader reader, int docId, java.lang.String field, Document doc, Analyzer analyzer) throws java.io.IOException
A convenience method that tries to first get a TermPositionVector for the specified docId, then, falls back to using the passed inDocument
to retrieve the TokenStream. This is useful when you already have the document, but would prefer to use the vector first.- Parameters:
reader
- TheIndexReader
to use to try and get the vector fromdocId
- The docId to retrieve.field
- The field to retrieve on the documentdoc
- The document to fall back onanalyzer
- The analyzer to use for creating the TokenStream if the vector doesn't exist- Returns:
- The
TokenStream
for theIndexableField
on theDocument
- Throws:
java.io.IOException
- if there was an error loading
-
getAnyTokenStream
public static TokenStream getAnyTokenStream(IndexReader reader, int docId, java.lang.String field, Analyzer analyzer) throws java.io.IOException
A convenience method that tries a number of approaches to getting a token stream. The cost of finding there are no termVectors in the index is minimal (1000 invocations still registers 0 ms). So this "lazy" (flexible?) approach to coding is probably acceptable- Returns:
- null if field not stored correctly
- Throws:
java.io.IOException
- If there is a low-level I/O error
-
getTokenStream
public static TokenStream getTokenStream(Terms vector) throws java.io.IOException
- Throws:
java.io.IOException
-
getTokenStream
public static TokenStream getTokenStream(Terms tpv, boolean tokenPositionsGuaranteedContiguous) throws java.io.IOException
Low level api. Returns a token stream generated from aTerms
. This can be used to feed the highlighter with a pre-parsed token stream. TheTerms
must have offsets available. In my tests the speeds to recreate 1000 token streams using this method are: - with TermVector offset only data stored - 420 milliseconds - with TermVector offset AND position data stored - 271 milliseconds (nb timings for TermVector with position data are based on a tokenizer with contiguous positions - no overlaps or gaps) The cost of not using TermPositionVector to store pre-parsed content and using an analyzer to re-parse the original content: - reanalyzing the original content - 980 milliseconds The re-analyze timings will typically vary depending on - 1) The complexity of the analyzer code (timings above were using a stemmer/lowercaser/stopword combo) 2) The number of other fields (Lucene reads ALL fields off the disk when accessing just one document field - can cost dear!) 3) Use of compression on field storage - could be faster due to compression (less disk IO) or slower (more CPU burn) depending on the content.- Parameters:
tokenPositionsGuaranteedContiguous
- true if the token position numbers have no overlaps or gaps. If looking to eek out the last drops of performance, set to true. If in doubt, set to false.- Throws:
java.lang.IllegalArgumentException
- if no offsets are availablejava.io.IOException
-
getTokenStreamWithOffsets
public static TokenStream getTokenStreamWithOffsets(IndexReader reader, int docId, java.lang.String field) throws java.io.IOException
Returns aTokenStream
with positions and offsets constructed from field termvectors. If the field has no termvectors, or positions or offsets are not included in the termvector, return null.- Parameters:
reader
- theIndexReader
to retrieve term vectors fromdocId
- the document to retrieve termvectors forfield
- the field to retrieve termvectors for- Returns:
- a
TokenStream
, or null if positions and offsets are not available - Throws:
java.io.IOException
- If there is a low-level I/O error
-
getTokenStream
public static TokenStream getTokenStream(IndexReader reader, int docId, java.lang.String field, Analyzer analyzer) throws java.io.IOException
- Throws:
java.io.IOException
-
getTokenStream
public static TokenStream getTokenStream(Document doc, java.lang.String field, Analyzer analyzer)
-
getTokenStream
public static TokenStream getTokenStream(java.lang.String field, java.lang.String contents, Analyzer analyzer)
-
-