Package org.apache.lucene.search.vectorhighlight
Features
- fast for large docs
- support N-gram fields
- support phrase-unit highlighting with slops
- support multi-term (includes wildcard, range, regexp, etc) queries
- need Java 1.5
- highlight fields need to be stored with Positions and Offsets
- take into account query boost and/or IDF-weight to score fragments
- support colored highlight tags
- pluggable FragListBuilder / FieldFragList
- pluggable FragmentsBuilder
Algorithm
To explain the algorithm, let's use the following sample text (to be highlighted) and user query:
Sample Text | Lucene is a search engine library. |
User Query | Lucene^2 OR "search library"~1 |
The user query is a BooleanQuery that consists of TermQuery("Lucene") with boost of 2 and PhraseQuery("search library") with slop of 1.
For your convenience, here is the offsets and positions info of the sample text.
+--------+-----------------------------------+ | | 1111111111222222222233333| | offset|01234567890123456789012345678901234| +--------+-----------------------------------+ |document|Lucene is a search engine library. | +--------*-----------------------------------+ |position|0 1 2 3 4 5 | +--------*-----------------------------------+
Step 1.
In Step 1, Fast Vector Highlighter generates FieldQuery.QueryPhraseMap
from the user query.
QueryPhraseMap
consists of the following members:
public class QueryPhraseMap { boolean terminal; int slop; // valid if terminal == true and phraseHighlight == true float boost; // valid if terminal == true Map<String, QueryPhraseMap> subMap; }
QueryPhraseMap
has subMap. The key of the subMap is a term
text in the user query and the value is a subsequent QueryPhraseMap
.
If the query is a term (not phrase), then the subsequent QueryPhraseMap
is marked as terminal. If the query is a phrase, then the subsequent QueryPhraseMap
is not a terminal and it has the next term text in the phrase.
From the sample user query, the following QueryPhraseMap
will be generated:
QueryPhraseMap +--------+-+ +-------+-+ |"Lucene"|o+->|boost=2|*| * : terminal +--------+-+ +-------+-+ +--------+-+ +---------+-+ +-------+------+-+ |"search"|o+->|"library"|o+->|boost=1|slop=1|*| +--------+-+ +---------+-+ +-------+------+-+
Step 2.
In Step 2, Fast Vector Highlighter generates FieldTermStack
. Fast Vector Highlighter uses term vector data
(must be stored FieldType.setStoreTermVectorOffsets(boolean)
and FieldType.setStoreTermVectorPositions(boolean)
)
to generate it. FieldTermStack
keeps the terms in the user query.
Therefore, in this sample case, Fast Vector Highlighter generates the following FieldTermStack
:
FieldTermStack +------------------+ |"Lucene"(0,6,0) | +------------------+ |"search"(12,18,3) | +------------------+ |"library"(26,33,5)| +------------------+ where : "termText"(startOffset,endOffset,position)
Step 3.
In Step 3, Fast Vector Highlighter generates FieldPhraseList
by reference to QueryPhraseMap
and FieldTermStack
.
FieldPhraseList +----------------+-----------------+---+ |"Lucene" |[(0,6)] |w=2| +----------------+-----------------+---+ |"search library"|[(12,18),(26,33)]|w=1| +----------------+-----------------+---+
The type of each entry is WeightedPhraseInfo
that consists of
an array of terms offsets and weight.
Step 4.
In Step 4, Fast Vector Highlighter creates FieldFragList
by reference to
FieldPhraseList
. In this sample case, the following
FieldFragList
will be generated:
FieldFragList +---------------------------------+ |"Lucene"[(0,6)] | |"search library"[(12,18),(26,33)]| |totalBoost=3 | +---------------------------------+
The calculation for each FieldFragList.WeightedFragInfo.totalBoost
(weight)
depends on the implementation of FieldFragList.add( ... )
:
public void add( int startOffset, int endOffset, List<WeightedPhraseInfo> phraseInfoList ) { float totalBoost = 0; List<SubInfo> subInfos = new ArrayList<SubInfo>(); for( WeightedPhraseInfo phraseInfo : phraseInfoList ){ subInfos.add( new SubInfo( phraseInfo.getText(), phraseInfo.getTermsOffsets(), phraseInfo.getSeqnum() ) ); totalBoost += phraseInfo.getBoost(); } getFragInfos().add( new WeightedFragInfo( startOffset, endOffset, subInfos, totalBoost ) ); }The used implementation of
FieldFragList
is noted in BaseFragListBuilder.createFieldFragList( ... )
:
public FieldFragList createFieldFragList( FieldPhraseList fieldPhraseList, int fragCharSize ){ return createFieldFragList( fieldPhraseList, new SimpleFieldFragList( fragCharSize ), fragCharSize ); }
Currently there are basically to approaches available:
SimpleFragListBuilder using SimpleFieldFragList
: sum-of-boosts-approach. The totalBoost is calculated by summarizing the query-boosts per term. Per default a term is boosted by 1.0WeightedFragListBuilder using WeightedFieldFragList
: sum-of-distinct-weights-approach. The totalBoost is calculated by summarizing the IDF-weights of distinct terms.
Comparison of the two approaches:
Terms in fragment | sum-of-distinct-weights | sum-of-boosts |
---|---|---|
das alte testament | 5.339621 | 3.0 |
das alte testament | 5.339621 | 3.0 |
das testament alte | 5.339621 | 3.0 |
das alte testament | 5.339621 | 3.0 |
das testament | 2.9455688 | 2.0 |
das alte | 2.4759595 | 2.0 |
das das das das | 1.5015357 | 4.0 |
das das das | 1.3003681 | 3.0 |
das das | 1.061746 | 2.0 |
alte | 1.0 | 1.0 |
alte | 1.0 | 1.0 |
das | 0.7507678 | 1.0 |
das | 0.7507678 | 1.0 |
das | 0.7507678 | 1.0 |
das | 0.7507678 | 1.0 |
das | 0.7507678 | 1.0 |
Step 5.
In Step 5, by using FieldFragList
and the field stored data,
Fast Vector Highlighter creates highlighted snippets!
-
Interface Summary Interface Description BoundaryScanner Finds fragment boundaries: pluggable intoBaseFragmentsBuilder
FragListBuilder FragListBuilder is an interface for FieldFragList builder classes.FragmentsBuilder FragmentsBuilder
is an interface for fragments (snippets) builder classes. -
Class Summary Class Description BaseFragListBuilder A abstract implementation ofFragListBuilder
.BaseFragmentsBuilder Base FragmentsBuilder implementation that supports colored pre/post tags and multivalued fields.BreakIteratorBoundaryScanner ABoundaryScanner
implementation that usesBreakIterator
to find boundaries in the text.FastVectorHighlighter Another highlighter implementation.FieldFragList FieldFragList has a list of "frag info" that is used by FragmentsBuilder class to create fragments (snippets).FieldFragList.WeightedFragInfo List of term offsets + weight for a frag infoFieldFragList.WeightedFragInfo.SubInfo Represents the list of term offsets for some textFieldPhraseList FieldPhraseList has a list of WeightedPhraseInfo that is used by FragListBuilder to create a FieldFragList object.FieldPhraseList.WeightedPhraseInfo Represents the list of term offsets and boost for some textFieldPhraseList.WeightedPhraseInfo.Toffs Term offsets (start + end)FieldQuery FieldQuery breaks down query object into terms/phrases and keeps them in a QueryPhraseMap structure.FieldQuery.QueryPhraseMap Internal structure of a query for highlighting: represents a nested query structureFieldTermStack FieldTermStack
is a stack that keeps query terms in the specified field of the document to be highlighted.FieldTermStack.TermInfo Single term with its position/offsets in the document and IDF weight.ScoreOrderFragmentsBuilder An implementation of FragmentsBuilder that outputs score-order fragments.ScoreOrderFragmentsBuilder.ScoreComparator Comparator forFieldFragList.WeightedFragInfo
by boost, breaking ties by offset.SimpleBoundaryScanner Simple boundary scanner implementation that divides fragments based on a set of separator characters.SimpleFieldFragList A simple implementation ofFieldFragList
.SimpleFragListBuilder A simple implementation ofFragListBuilder
.SimpleFragmentsBuilder A simple implementation of FragmentsBuilder.SingleFragListBuilder An implementation class ofFragListBuilder
that generates oneFieldFragList.WeightedFragInfo
object.WeightedFieldFragList A weighted implementation ofFieldFragList
.WeightedFragListBuilder A weighted implementation ofFragListBuilder
.