public class PolynomialsUtils
extends java.lang.Object
Modifier and Type | Method and Description |
---|---|
static PolynomialFunction |
createChebyshevPolynomial(int degree)
Create a Chebyshev polynomial of the first kind.
|
static PolynomialFunction |
createHermitePolynomial(int degree)
Create a Hermite polynomial.
|
static PolynomialFunction |
createLaguerrePolynomial(int degree)
Create a Laguerre polynomial.
|
static PolynomialFunction |
createLegendrePolynomial(int degree)
Create a Legendre polynomial.
|
public static PolynomialFunction createChebyshevPolynomial(int degree)
Chebyshev polynomials of the first kind are orthogonal polynomials. They can be defined by the following recurrence relations:
T0(X) = 1 T1(X) = X Tk+1(X) = 2X Tk(X) - Tk-1(X)
degree
- degree of the polynomialpublic static PolynomialFunction createHermitePolynomial(int degree)
Hermite polynomials are orthogonal polynomials. They can be defined by the following recurrence relations:
H0(X) = 1 H1(X) = 2X Hk+1(X) = 2X Hk(X) - 2k Hk-1(X)
degree
- degree of the polynomialpublic static PolynomialFunction createLaguerrePolynomial(int degree)
Laguerre polynomials are orthogonal polynomials. They can be defined by the following recurrence relations:
L0(X) = 1 L1(X) = 1 - X (k+1) Lk+1(X) = (2k + 1 - X) Lk(X) - k Lk-1(X)
degree
- degree of the polynomialpublic static PolynomialFunction createLegendrePolynomial(int degree)
Legendre polynomials are orthogonal polynomials. They can be defined by the following recurrence relations:
P0(X) = 1 P1(X) = X (k+1) Pk+1(X) = (2k+1) X Pk(X) - k Pk-1(X)
degree
- degree of the polynomial"Copyright © 2010 - 2020 Adobe Systems Incorporated. All Rights Reserved"