public class ChiSquaredDistributionImpl extends AbstractContinuousDistribution implements ChiSquaredDistribution, java.io.Serializable
ChiSquaredDistribution
Modifier and Type | Field and Description |
---|---|
static double |
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy
|
Constructor and Description |
---|
ChiSquaredDistributionImpl(double df)
Create a Chi-Squared distribution with the given degrees of freedom.
|
ChiSquaredDistributionImpl(double df,
double inverseCumAccuracy)
Create a Chi-Squared distribution with the given degrees of freedom and
inverse cumulative probability accuracy.
|
ChiSquaredDistributionImpl(double df,
GammaDistribution g)
Deprecated.
as of 2.1 (to avoid possibly inconsistent state, the
"GammaDistribution" will be instantiated internally)
|
Modifier and Type | Method and Description |
---|---|
double |
cumulativeProbability(double x)
For this distribution, X, this method returns P(X < x).
|
double |
density(double x)
Return the probability density for a particular point.
|
double |
density(java.lang.Double x)
Deprecated.
|
double |
getDegreesOfFreedom()
Access the degrees of freedom.
|
double |
getNumericalMean()
Returns the mean of the distribution.
|
double |
getNumericalVariance()
Returns the variance of the distribution.
|
double |
getSupportLowerBound()
Returns the lower bound of the support for the distribution.
|
double |
getSupportUpperBound()
Returns the upper bound for the support for the distribution.
|
double |
inverseCumulativeProbability(double p)
For this distribution, X, this method returns the critical point x, such
that P(X < x) =
p . |
void |
setDegreesOfFreedom(double degreesOfFreedom)
Deprecated.
as of 2.1 (class will become immutable in 3.0)
|
void |
setGamma(GammaDistribution g)
Deprecated.
as of 2.1 (class will become immutable in 3.0)
|
reseedRandomGenerator, sample, sample
cumulativeProbability
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
cumulativeProbability
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY
public ChiSquaredDistributionImpl(double df)
df
- degrees of freedom.@Deprecated public ChiSquaredDistributionImpl(double df, GammaDistribution g)
df
- degrees of freedom.g
- the underlying gamma distribution used to compute probabilities.public ChiSquaredDistributionImpl(double df, double inverseCumAccuracy)
df
- degrees of freedom.inverseCumAccuracy
- the maximum absolute error in inverse cumulative probability estimates
(defaults to DEFAULT_INVERSE_ABSOLUTE_ACCURACY
)@Deprecated public void setDegreesOfFreedom(double degreesOfFreedom)
setDegreesOfFreedom
in interface ChiSquaredDistribution
degreesOfFreedom
- the new degrees of freedom.public double getDegreesOfFreedom()
getDegreesOfFreedom
in interface ChiSquaredDistribution
@Deprecated public double density(java.lang.Double x)
density
in interface ChiSquaredDistribution
density
in interface HasDensity<java.lang.Double>
x
- The point at which the density should be computed.public double density(double x)
density
in class AbstractContinuousDistribution
x
- The point at which the density should be computed.public double cumulativeProbability(double x) throws MathException
cumulativeProbability
in interface Distribution
x
- the value at which the CDF is evaluated.MathException
- if the cumulative probability can not be
computed due to convergence or other numerical errors.public double inverseCumulativeProbability(double p) throws MathException
p
.
Returns 0 for p=0 and Double.POSITIVE_INFINITY
for p=1.
inverseCumulativeProbability
in interface ContinuousDistribution
inverseCumulativeProbability
in class AbstractContinuousDistribution
p
- the desired probabilityp
MathException
- if the inverse cumulative probability can not be
computed due to convergence or other numerical errors.java.lang.IllegalArgumentException
- if p
is not a valid
probability.@Deprecated public void setGamma(GammaDistribution g)
g
- the new distribution.public double getSupportLowerBound()
public double getSupportUpperBound()
public double getNumericalMean()
k
degrees of freedom, the mean is
k
public double getNumericalVariance()
k
degrees of freedom, the variance is
2 * k
"Copyright © 2010 - 2020 Adobe Systems Incorporated. All Rights Reserved"