Class TDistributionImpl
- java.lang.Object
 - 
- org.apache.commons.math.distribution.AbstractDistribution
 - 
- org.apache.commons.math.distribution.AbstractContinuousDistribution
 - 
- org.apache.commons.math.distribution.TDistributionImpl
 
 
 
 
- 
- All Implemented Interfaces:
 java.io.Serializable,ContinuousDistribution,Distribution,TDistribution
public class TDistributionImpl extends AbstractContinuousDistribution implements TDistribution, java.io.Serializable
Default implementation ofTDistribution.- See Also:
 - Serialized Form
 
 
- 
- 
Field Summary
Fields Modifier and Type Field Description static doubleDEFAULT_INVERSE_ABSOLUTE_ACCURACYDefault inverse cumulative probability accuracy 
- 
Constructor Summary
Constructors Constructor Description TDistributionImpl(double degreesOfFreedom)Create a t distribution using the given degrees of freedom.TDistributionImpl(double degreesOfFreedom, double inverseCumAccuracy)Create a t distribution using the given degrees of freedom and the specified inverse cumulative probability absolute accuracy. 
- 
Method Summary
All Methods Instance Methods Concrete Methods Deprecated Methods Modifier and Type Method Description doublecumulativeProbability(double x)For this distribution, X, this method returns P(X <x).doubledensity(double x)Returns the probability density for a particular point.doublegetDegreesOfFreedom()Access the degrees of freedom.doublegetNumericalMean()Returns the mean.doublegetNumericalVariance()Returns the variance.doublegetSupportLowerBound()Returns the lower bound of the support for the distribution.doublegetSupportUpperBound()Returns the upper bound of the support for the distribution.doubleinverseCumulativeProbability(double p)For this distribution, X, this method returns the critical point x, such that P(X < x) =p.voidsetDegreesOfFreedom(double degreesOfFreedom)Deprecated.as of 2.1 (class will become immutable in 3.0)- 
Methods inherited from class org.apache.commons.math.distribution.AbstractContinuousDistribution
reseedRandomGenerator, sample, sample 
- 
Methods inherited from class org.apache.commons.math.distribution.AbstractDistribution
cumulativeProbability 
- 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait 
- 
Methods inherited from interface org.apache.commons.math.distribution.Distribution
cumulativeProbability 
 - 
 
 - 
 
- 
- 
Field Detail
- 
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy- Since:
 - 2.1
 - See Also:
 - Constant Field Values
 
 
 - 
 
- 
Constructor Detail
- 
TDistributionImpl
public TDistributionImpl(double degreesOfFreedom, double inverseCumAccuracy)Create a t distribution using the given degrees of freedom and the specified inverse cumulative probability absolute accuracy.- Parameters:
 degreesOfFreedom- the degrees of freedom.inverseCumAccuracy- the maximum absolute error in inverse cumulative probability estimates (defaults toDEFAULT_INVERSE_ABSOLUTE_ACCURACY)- Since:
 - 2.1
 
 
- 
TDistributionImpl
public TDistributionImpl(double degreesOfFreedom)
Create a t distribution using the given degrees of freedom.- Parameters:
 degreesOfFreedom- the degrees of freedom.
 
 - 
 
- 
Method Detail
- 
setDegreesOfFreedom
@Deprecated public void setDegreesOfFreedom(double degreesOfFreedom)
Deprecated.as of 2.1 (class will become immutable in 3.0)Modify the degrees of freedom.- Specified by:
 setDegreesOfFreedomin interfaceTDistribution- Parameters:
 degreesOfFreedom- the new degrees of freedom.
 
- 
getDegreesOfFreedom
public double getDegreesOfFreedom()
Access the degrees of freedom.- Specified by:
 getDegreesOfFreedomin interfaceTDistribution- Returns:
 - the degrees of freedom.
 
 
- 
density
public double density(double x)
Returns the probability density for a particular point.- Overrides:
 densityin classAbstractContinuousDistribution- Parameters:
 x- The point at which the density should be computed.- Returns:
 - The pdf at point x.
 - Since:
 - 2.1
 
 
- 
cumulativeProbability
public double cumulativeProbability(double x) throws MathExceptionFor this distribution, X, this method returns P(X <x).- Specified by:
 cumulativeProbabilityin interfaceDistribution- Parameters:
 x- the value at which the CDF is evaluated.- Returns:
 - CDF evaluated at 
x. - Throws:
 MathException- if the cumulative probability can not be computed due to convergence or other numerical errors.
 
- 
inverseCumulativeProbability
public double inverseCumulativeProbability(double p) throws MathExceptionFor this distribution, X, this method returns the critical point x, such that P(X < x) =p.Returns
Double.NEGATIVE_INFINITYfor p=0 andDouble.POSITIVE_INFINITYfor p=1.- Specified by:
 inverseCumulativeProbabilityin interfaceContinuousDistribution- Overrides:
 inverseCumulativeProbabilityin classAbstractContinuousDistribution- Parameters:
 p- the desired probability- Returns:
 - x, such that P(X < x) = 
p - Throws:
 MathException- if the inverse cumulative probability can not be computed due to convergence or other numerical errors.java.lang.IllegalArgumentException- ifpis not a valid probability.
 
- 
getSupportLowerBound
public double getSupportLowerBound()
Returns the lower bound of the support for the distribution. The lower bound of the support is always negative infinity no matter the parameters.- Returns:
 - lower bound of the support (always Double.NEGATIVE_INFINITY)
 - Since:
 - 2.2
 
 
- 
getSupportUpperBound
public double getSupportUpperBound()
Returns the upper bound of the support for the distribution. The upper bound of the support is always positive infinity no matter the parameters.- Returns:
 - upper bound of the support (always Double.POSITIVE_INFINITY)
 - Since:
 - 2.2
 
 
- 
getNumericalMean
public double getNumericalMean()
Returns the mean. For degrees of freedom parameter df, the mean is- if 
df > 1then0 - else 
undefined 
- Returns:
 - the mean
 - Since:
 - 2.2
 
 - if 
 
- 
getNumericalVariance
public double getNumericalVariance()
Returns the variance. For degrees of freedom parameter df, the variance is- if 
df > 2thendf / (df - 2) - if 
1 < df <= 2thenpositive infinity - else 
undefined 
- Returns:
 - the variance
 - Since:
 - 2.2
 
 - if 
 
 - 
 
 -