public class BetaDistributionImpl extends AbstractContinuousDistribution implements BetaDistribution
References:
Modifier and Type | Field and Description |
---|---|
static double |
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy
|
Constructor and Description |
---|
BetaDistributionImpl(double alpha,
double beta)
Build a new instance.
|
BetaDistributionImpl(double alpha,
double beta,
double inverseCumAccuracy)
Build a new instance.
|
Modifier and Type | Method and Description |
---|---|
double |
cumulativeProbability(double x)
For a random variable X whose values are distributed according
to this distribution, this method returns P(X ≤ x).
|
double |
cumulativeProbability(double x0,
double x1)
For a random variable X whose values are distributed according
to this distribution, this method returns P(x0 ≤ X ≤ x1).
|
double |
density(double x)
Return the probability density for a particular point.
|
double |
density(java.lang.Double x)
Deprecated.
|
double |
getAlpha()
Access the shape parameter, alpha
|
double |
getBeta()
Access the shape parameter, beta
|
double |
getNumericalMean()
Returns the mean.
|
double |
getNumericalVariance()
Returns the variance.
|
double |
getSupportLowerBound()
Returns the lower bound of the support for this distribution.
|
double |
getSupportUpperBound()
Returns the upper bound of the support for this distribution.
|
double |
inverseCumulativeProbability(double p)
For this distribution, X, this method returns the critical point x, such
that P(X < x) =
p . |
void |
setAlpha(double alpha)
Deprecated.
as of 2.1 (class will become immutable in 3.0)
|
void |
setBeta(double beta)
Deprecated.
as of 2.1 (class will become immutable in 3.0)
|
reseedRandomGenerator, sample, sample
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY
public BetaDistributionImpl(double alpha, double beta, double inverseCumAccuracy)
alpha
- first shape parameter (must be positive)beta
- second shape parameter (must be positive)inverseCumAccuracy
- the maximum absolute error in inverse cumulative probability estimates
(defaults to DEFAULT_INVERSE_ABSOLUTE_ACCURACY
)public BetaDistributionImpl(double alpha, double beta)
alpha
- first shape parameter (must be positive)beta
- second shape parameter (must be positive)@Deprecated public void setAlpha(double alpha)
setAlpha
in interface BetaDistribution
alpha
- the new shape parameter.public double getAlpha()
getAlpha
in interface BetaDistribution
@Deprecated public void setBeta(double beta)
setBeta
in interface BetaDistribution
beta
- the new scale parameter.public double getBeta()
getBeta
in interface BetaDistribution
@Deprecated public double density(java.lang.Double x)
density
in interface BetaDistribution
density
in interface HasDensity<java.lang.Double>
x
- The point at which the density should be computed.public double density(double x)
density
in class AbstractContinuousDistribution
x
- The point at which the density should be computed.public double inverseCumulativeProbability(double p) throws MathException
p
.inverseCumulativeProbability
in interface ContinuousDistribution
inverseCumulativeProbability
in class AbstractContinuousDistribution
p
- the desired probabilityp
MathException
- if the inverse cumulative probability can not be
computed due to convergence or other numerical errors.public double cumulativeProbability(double x) throws MathException
cumulativeProbability
in interface Distribution
x
- the value at which the distribution function is evaluated.x
MathException
- if the cumulative probability can not be
computed due to convergence or other numerical errors.public double cumulativeProbability(double x0, double x1) throws MathException
The default implementation uses the identity
P(x0 ≤ X ≤ x1) = P(X ≤ x1) - P(X ≤ x0)
cumulativeProbability
in interface Distribution
cumulativeProbability
in class AbstractDistribution
x0
- the (inclusive) lower boundx1
- the (inclusive) upper boundx0
and x1
,
including the endpoints.MathException
- if the cumulative probability can not be
computed due to convergence or other numerical errors.public double getSupportLowerBound()
public double getSupportUpperBound()
public double getNumericalMean()
s1
and
second shape parameter s2
, the mean is
s1 / (s1 + s2)
public double getNumericalVariance()
s1
and
second shape parameter s2
,
the variance is
[ s1 * s2 ] / [ (s1 + s2)^2 * (s1 + s2 + 1) ]
Copyright © 2010 - 2020 Adobe. All Rights Reserved