public class GammaDistributionImpl extends AbstractContinuousDistribution implements GammaDistribution, java.io.Serializable
GammaDistribution
.Modifier and Type | Field and Description |
---|---|
static double |
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy
|
Constructor and Description |
---|
GammaDistributionImpl(double alpha,
double beta)
Create a new gamma distribution with the given alpha and beta values.
|
GammaDistributionImpl(double alpha,
double beta,
double inverseCumAccuracy)
Create a new gamma distribution with the given alpha and beta values.
|
Modifier and Type | Method and Description |
---|---|
double |
cumulativeProbability(double x)
For this distribution, X, this method returns P(X < x).
|
double |
density(double x)
Returns the probability density for a particular point.
|
double |
density(java.lang.Double x)
Deprecated.
|
double |
getAlpha()
Access the shape parameter, alpha
|
double |
getBeta()
Access the scale parameter, beta
|
double |
getNumericalMean()
Returns the mean.
|
double |
getNumericalVariance()
Returns the variance.
|
double |
getSupportLowerBound()
Returns the upper bound of the support for the distribution.
|
double |
getSupportUpperBound()
Returns the upper bound of the support for the distribution.
|
double |
inverseCumulativeProbability(double p)
For this distribution, X, this method returns the critical point x, such
that P(X < x) =
p . |
void |
setAlpha(double alpha)
Deprecated.
as of 2.1 (class will become immutable in 3.0)
|
void |
setBeta(double newBeta)
Deprecated.
as of 2.1 (class will become immutable in 3.0)
|
reseedRandomGenerator, sample, sample
cumulativeProbability
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
cumulativeProbability
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY
public GammaDistributionImpl(double alpha, double beta)
alpha
- the shape parameter.beta
- the scale parameter.public GammaDistributionImpl(double alpha, double beta, double inverseCumAccuracy)
alpha
- the shape parameter.beta
- the scale parameter.inverseCumAccuracy
- the maximum absolute error in inverse cumulative probability estimates
(defaults to DEFAULT_INVERSE_ABSOLUTE_ACCURACY
)public double cumulativeProbability(double x) throws MathException
cumulativeProbability
in interface Distribution
x
- the value at which the CDF is evaluated.MathException
- if the cumulative probability can not be
computed due to convergence or other numerical errors.public double inverseCumulativeProbability(double p) throws MathException
p
.
Returns 0 for p=0 and Double.POSITIVE_INFINITY
for p=1.
inverseCumulativeProbability
in interface ContinuousDistribution
inverseCumulativeProbability
in class AbstractContinuousDistribution
p
- the desired probabilityp
MathException
- if the inverse cumulative probability can not be
computed due to convergence or other numerical errors.java.lang.IllegalArgumentException
- if p
is not a valid
probability.@Deprecated public void setAlpha(double alpha)
setAlpha
in interface GammaDistribution
alpha
- the new shape parameter.java.lang.IllegalArgumentException
- if alpha
is not positive.public double getAlpha()
getAlpha
in interface GammaDistribution
@Deprecated public void setBeta(double newBeta)
setBeta
in interface GammaDistribution
newBeta
- the new scale parameter.java.lang.IllegalArgumentException
- if newBeta
is not positive.public double getBeta()
getBeta
in interface GammaDistribution
public double density(double x)
density
in class AbstractContinuousDistribution
x
- The point at which the density should be computed.@Deprecated public double density(java.lang.Double x)
density
in interface GammaDistribution
density
in interface HasDensity<java.lang.Double>
x
- The point at which the density should be computed.public double getSupportLowerBound()
public double getSupportUpperBound()
public double getNumericalMean()
alpha
and scale
parameter beta
, the mean is
alpha * beta
public double getNumericalVariance()
alpha
and scale
parameter beta
, the variance is
alpha * beta^2
Copyright © 2010 - 2020 Adobe. All Rights Reserved