public class OneWayAnovaImpl extends java.lang.Object implements OneWayAnova
OneWayAnovaImpl
interface.
Uses the
commons-math F Distribution implementation
to estimate exact p-values.
This implementation is based on a description at http://faculty.vassar.edu/lowry/ch13pt1.html
Abbreviations: bg = between groups, wg = within groups, ss = sum squared deviations
Constructor and Description |
---|
OneWayAnovaImpl()
Default constructor.
|
Modifier and Type | Method and Description |
---|---|
double |
anovaFValue(java.util.Collection<double[]> categoryData)
Computes the ANOVA F-value for a collection of
double[]
arrays. |
double |
anovaPValue(java.util.Collection<double[]> categoryData)
Computes the ANOVA P-value for a collection of
double[]
arrays. |
boolean |
anovaTest(java.util.Collection<double[]> categoryData,
double alpha)
Performs an ANOVA test, evaluating the null hypothesis that there
is no difference among the means of the data categories.
|
public double anovaFValue(java.util.Collection<double[]> categoryData) throws java.lang.IllegalArgumentException, MathException
double[]
arrays.
Preconditions:
Collection
must contain
double[]
arrays.double[]
arrays in the
categoryData
collection and each of these arrays must
contain at least two values.This implementation computes the F statistic using the definitional formula
F = msbg/mswgwhere
msbg = between group mean square mswg = within group mean squareare as defined here
anovaFValue
in interface OneWayAnova
categoryData
- Collection
of double[]
arrays each containing data for one categoryjava.lang.IllegalArgumentException
- if the preconditions are not metMathException
- if the statistic can not be computed do to a
convergence or other numerical error.public double anovaPValue(java.util.Collection<double[]> categoryData) throws java.lang.IllegalArgumentException, MathException
double[]
arrays.
Preconditions:
Collection
must contain
double[]
arrays.double[]
arrays in the
categoryData
collection and each of these arrays must
contain at least two values.
This implementation uses the
commons-math F Distribution implementation
to estimate the exact
p-value, using the formula
p = 1 - cumulativeProbability(F)where
F
is the F value and cumulativeProbability
is the commons-math implementation of the F distribution.anovaPValue
in interface OneWayAnova
categoryData
- Collection
of double[]
arrays each containing data for one categoryjava.lang.IllegalArgumentException
- if the preconditions are not metMathException
- if the statistic can not be computed do to a
convergence or other numerical error.public boolean anovaTest(java.util.Collection<double[]> categoryData, double alpha) throws java.lang.IllegalArgumentException, MathException
Preconditions:
Collection
must contain
double[]
arrays.double[]
arrays in the
categoryData
collection and each of these arrays must
contain at least two values.
This implementation uses the
commons-math F Distribution implementation
to estimate the exact
p-value, using the formula
p = 1 - cumulativeProbability(F)where
F
is the F value and cumulativeProbability
is the commons-math implementation of the F distribution.
True is returned iff the estimated p-value is less than alpha.
anovaTest
in interface OneWayAnova
categoryData
- Collection
of double[]
arrays each containing data for one categoryalpha
- significance level of the testjava.lang.IllegalArgumentException
- if the preconditions are not metMathException
- if the statistic can not be computed do to a
convergence or other numerical error.Copyright © 2010 - 2020 Adobe. All Rights Reserved