public class FastMath
extends java.lang.Object
StrictMath
.
Additionally implements the following methods not found in StrictMath:
The following methods are found in StrictMath since 1.6 onlyModifier and Type | Field and Description |
---|---|
static double |
E
Napier's constant e, base of the natural logarithm.
|
static double |
PI
Archimede's constant PI, ratio of circle circumference to diameter.
|
Modifier and Type | Method and Description |
---|---|
static double |
abs(double x)
Absolute value.
|
static float |
abs(float x)
Absolute value.
|
static int |
abs(int x)
Absolute value.
|
static long |
abs(long x)
Absolute value.
|
static double |
acos(double x)
Compute the arc cosine of a number.
|
static double |
acosh(double a)
Compute the inverse hyperbolic cosine of a number.
|
static double |
asin(double x)
Compute the arc sine of a number.
|
static double |
asinh(double a)
Compute the inverse hyperbolic sine of a number.
|
static double |
atan(double x)
Arctangent function
|
static double |
atan2(double y,
double x)
Two arguments arctangent function
|
static double |
atanh(double a)
Compute the inverse hyperbolic tangent of a number.
|
static double |
cbrt(double x)
Compute the cubic root of a number.
|
static double |
ceil(double x)
Get the smallest whole number larger than x.
|
static double |
copySign(double magnitude,
double sign)
Returns the first argument with the sign of the second argument.
|
static float |
copySign(float magnitude,
float sign)
Returns the first argument with the sign of the second argument.
|
static double |
cos(double x)
Cosine function
|
static double |
cosh(double x)
Compute the hyperbolic cosine of a number.
|
static double |
exp(double x)
Exponential function.
|
static double |
expm1(double x)
Compute exp(x) - 1
|
static double |
floor(double x)
Get the largest whole number smaller than x.
|
static int |
getExponent(double d)
Return the exponent of a double number, removing the bias.
|
static int |
getExponent(float f)
Return the exponent of a float number, removing the bias.
|
static double |
hypot(double x,
double y)
Returns the hypotenuse of a triangle with sides
x and y
- sqrt(x2 +y2)avoiding intermediate overflow or underflow. |
static double |
IEEEremainder(double dividend,
double divisor)
Computes the remainder as prescribed by the IEEE 754 standard.
|
static double |
log(double x)
Natural logarithm.
|
static double |
log10(double x)
Compute the base 10 logarithm.
|
static double |
log1p(double x)
Compute log(1 + x).
|
static double |
max(double a,
double b)
Compute the maximum of two values
|
static float |
max(float a,
float b)
Compute the maximum of two values
|
static int |
max(int a,
int b)
Compute the maximum of two values
|
static long |
max(long a,
long b)
Compute the maximum of two values
|
static double |
min(double a,
double b)
Compute the minimum of two values
|
static float |
min(float a,
float b)
Compute the minimum of two values
|
static int |
min(int a,
int b)
Compute the minimum of two values
|
static long |
min(long a,
long b)
Compute the minimum of two values
|
static double |
nextAfter(double d,
double direction)
Get the next machine representable number after a number, moving
in the direction of another number.
|
static float |
nextAfter(float f,
double direction)
Get the next machine representable number after a number, moving
in the direction of another number.
|
static double |
nextUp(double a)
Compute next number towards positive infinity.
|
static float |
nextUp(float a)
Compute next number towards positive infinity.
|
static double |
pow(double x,
double y)
Power function.
|
static double |
random()
Returns a pseudo-random number between 0.0 and 1.0.
|
static double |
rint(double x)
Get the whole number that is the nearest to x, or the even one if x is exactly half way between two integers.
|
static long |
round(double x)
Get the closest long to x.
|
static int |
round(float x)
Get the closest int to x.
|
static double |
scalb(double d,
int n)
Multiply a double number by a power of 2.
|
static float |
scalb(float f,
int n)
Multiply a float number by a power of 2.
|
static double |
signum(double a)
Compute the signum of a number.
|
static float |
signum(float a)
Compute the signum of a number.
|
static double |
sin(double x)
Sine function.
|
static double |
sinh(double x)
Compute the hyperbolic sine of a number.
|
static double |
sqrt(double a)
Compute the square root of a number.
|
static double |
tan(double x)
Tangent function
|
static double |
tanh(double x)
Compute the hyperbolic tangent of a number.
|
static double |
toDegrees(double x)
Convert radians to degrees, with error of less than 0.5 ULP
|
static double |
toRadians(double x)
Convert degrees to radians, with error of less than 0.5 ULP
|
static double |
ulp(double x)
Compute least significant bit (Unit in Last Position) for a number.
|
static float |
ulp(float x)
Compute least significant bit (Unit in Last Position) for a number.
|
public static final double PI
public static final double E
public static double sqrt(double a)
Note: this implementation currently delegates to Math.sqrt(double)
a
- number on which evaluation is donepublic static double cosh(double x)
x
- number on which evaluation is donepublic static double sinh(double x)
x
- number on which evaluation is donepublic static double tanh(double x)
x
- number on which evaluation is donepublic static double acosh(double a)
a
- number on which evaluation is donepublic static double asinh(double a)
a
- number on which evaluation is donepublic static double atanh(double a)
a
- number on which evaluation is donepublic static double signum(double a)
a
- number on which evaluation is donepublic static float signum(float a)
a
- number on which evaluation is donepublic static double nextUp(double a)
a
- number to which neighbor should be computedpublic static float nextUp(float a)
a
- number to which neighbor should be computedpublic static double random()
Note: this implementation currently delegates to Math.random()
public static double exp(double x)
x
- a doublepublic static double expm1(double x)
x
- number to compute shifted exponentialpublic static double log(double x)
x
- a doublepublic static double log1p(double x)
x
- a numberpublic static double log10(double x)
x
- a numberpublic static double pow(double x, double y)
x
- a doubley
- a doublepublic static double sin(double x)
x
- a numberpublic static double cos(double x)
x
- a numberpublic static double tan(double x)
x
- a numberpublic static double atan(double x)
x
- a numberpublic static double atan2(double y, double x)
y
- ordinatex
- abscissa-PI
and PI
public static double asin(double x)
x
- number on which evaluation is donepublic static double acos(double x)
x
- number on which evaluation is donepublic static double cbrt(double x)
x
- number on which evaluation is donepublic static double toRadians(double x)
x
- angle in degreespublic static double toDegrees(double x)
x
- angle in radianspublic static int abs(int x)
x
- number from which absolute value is requestedpublic static long abs(long x)
x
- number from which absolute value is requestedpublic static float abs(float x)
x
- number from which absolute value is requestedpublic static double abs(double x)
x
- number from which absolute value is requestedpublic static double ulp(double x)
x
- number from which ulp is requestedpublic static float ulp(float x)
x
- number from which ulp is requestedpublic static double scalb(double d, int n)
d
- number to multiplyn
- power of 2public static float scalb(float f, int n)
f
- number to multiplyn
- power of 2public static double nextAfter(double d, double direction)
The ordering is as follows (increasing):
If arguments compare equal, then the second argument is returned.
If direction
is greater than d
,
the smallest machine representable number strictly greater than
d
is returned; if less, then the largest representable number
strictly less than d
is returned.
If d
is infinite and direction does not
bring it back to finite numbers, it is returned unchanged.
d
- base numberdirection
- (the only important thing is whether
direction
is greater or smaller than d
)public static float nextAfter(float f, double direction)
The ordering is as follows (increasing):
If arguments compare equal, then the second argument is returned.
If direction
is greater than f
,
the smallest machine representable number strictly greater than
f
is returned; if less, then the largest representable number
strictly less than f
is returned.
If f
is infinite and direction does not
bring it back to finite numbers, it is returned unchanged.
f
- base numberdirection
- (the only important thing is whether
direction
is greater or smaller than f
)public static double floor(double x)
x
- number from which floor is requestedpublic static double ceil(double x)
x
- number from which ceil is requestedpublic static double rint(double x)
x
- number from which nearest whole number is requestedpublic static long round(double x)
x
- number from which closest long is requestedpublic static int round(float x)
x
- number from which closest int is requestedpublic static int min(int a, int b)
a
- first valueb
- second valuepublic static long min(long a, long b)
a
- first valueb
- second valuepublic static float min(float a, float b)
a
- first valueb
- second valuepublic static double min(double a, double b)
a
- first valueb
- second valuepublic static int max(int a, int b)
a
- first valueb
- second valuepublic static long max(long a, long b)
a
- first valueb
- second valuepublic static float max(float a, float b)
a
- first valueb
- second valuepublic static double max(double a, double b)
a
- first valueb
- second valuepublic static double hypot(double x, double y)
x
and y
- sqrt(x2 +y2)x
- a valuey
- a valuepublic static double IEEEremainder(double dividend, double divisor)
x - y*n
where n
is the mathematical integer closest to the exact mathematical value
of the quotient x/y
.
If two mathematical integers are equally close to x/y
then
n
is the integer that is even.
Note: this implementation currently delegates to StrictMath.IEEEremainder(double, double)
dividend
- the number to be divideddivisor
- the number by which to dividepublic static double copySign(double magnitude, double sign)
sign
argument is treated as positive.magnitude
- the value to returnsign
- the sign for the returned valuesign
argumentpublic static float copySign(float magnitude, float sign)
sign
argument is treated as positive.magnitude
- the value to returnsign
- the sign for the returned valuesign
argumentpublic static int getExponent(double d)
For double numbers of the form 2x, the unbiased exponent is exactly x.
d
- number from which exponent is requestedpublic static int getExponent(float f)
For float numbers of the form 2x, the unbiased exponent is exactly x.
f
- number from which exponent is requestedCopyright © 2010 - 2020 Adobe. All Rights Reserved