public final class GISModel extends AbstractModel
AbstractModel.ModelType
Constructor and Description |
---|
GISModel(Context[] params,
java.lang.String[] predLabels,
java.lang.String[] outcomeNames,
int correctionConstant,
double correctionParam)
Creates a new model with the specified parameters, outcome names, and
predicate/feature labels.
|
GISModel(Context[] params,
java.lang.String[] predLabels,
java.lang.String[] outcomeNames,
int correctionConstant,
double correctionParam,
Prior prior)
Creates a new model with the specified parameters, outcome names, and
predicate/feature labels.
|
Modifier and Type | Method and Description |
---|---|
static double[] |
eval(int[] context,
double[] prior,
EvalParameters model)
Use this model to evaluate a context and return an array of the likelihood
of each outcome given the specified context and the specified parameters.
|
static double[] |
eval(int[] context,
float[] values,
double[] prior,
EvalParameters model)
Use this model to evaluate a context and return an array of the likelihood
of each outcome given the specified context and the specified parameters.
|
double[] |
eval(java.lang.String[] context)
Use this model to evaluate a context and return an array of the likelihood
of each outcome given that context.
|
double[] |
eval(java.lang.String[] context,
double[] outsums)
Evaluates a context.
|
double[] |
eval(java.lang.String[] context,
float[] values)
Evaluates a contexts with the specified context values.
|
double[] |
eval(java.lang.String[] context,
float[] values,
double[] outsums)
Use this model to evaluate a context and return an array of the likelihood
of each outcome given that context.
|
static void |
main(java.lang.String[] args) |
getAllOutcomes, getBestOutcome, getDataStructures, getIndex, getModelType, getNumOutcomes, getOutcome
public GISModel(Context[] params, java.lang.String[] predLabels, java.lang.String[] outcomeNames, int correctionConstant, double correctionParam)
params
- The parameters of the model.predLabels
- The names of the predicates used in this model.outcomeNames
- The names of the outcomes this model predicts.correctionConstant
- The maximum number of active features which occur in an event.correctionParam
- The parameter associated with the correction feature.public GISModel(Context[] params, java.lang.String[] predLabels, java.lang.String[] outcomeNames, int correctionConstant, double correctionParam, Prior prior)
params
- The parameters of the model.predLabels
- The names of the predicates used in this model.outcomeNames
- The names of the outcomes this model predicts.correctionConstant
- The maximum number of active features which occur in an event.correctionParam
- The parameter associated with the correction feature.prior
- The prior to be used with this model.public final double[] eval(java.lang.String[] context)
context
- The names of the predicates which have been observed at the
present decision point.public final double[] eval(java.lang.String[] context, float[] values)
MaxentModel
context
- A list of String names of the contextual predicates
which are to be evaluated together.values
- The values associated with each context.public final double[] eval(java.lang.String[] context, double[] outsums)
MaxentModel
context
- A list of String names of the contextual predicates
which are to be evaluated together.outsums
- An array which is populated with the probabilities for each of the different
outcomes, all of which sum to 1.public final double[] eval(java.lang.String[] context, float[] values, double[] outsums)
context
- The names of the predicates which have been observed at the
present decision point.outsums
- This is where the distribution is stored.public static double[] eval(int[] context, double[] prior, EvalParameters model)
context
- The integer values of the predicates which have been observed at
the present decision point.prior
- The prior distribution for the specified context.model
- The set of parametes used in this computation.public static double[] eval(int[] context, float[] values, double[] prior, EvalParameters model)
context
- The integer values of the predicates which have been observed at
the present decision point.values
- The values for each of the parameters.prior
- The prior distribution for the specified context.model
- The set of parametes used in this computation.public static void main(java.lang.String[] args) throws java.io.IOException
java.io.IOException
Copyright © 2010 - 2020 Adobe. All Rights Reserved